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Abstract. The nature of biaxial buckling and the quantitative calculation of  different parameters which are 
involved on the load carrying capacity of columns is the aim of this project. Columns with comparable strength 
about both axes will experience an interaction between various buckling parameters about both axes. Current 
methodologies for the design of columns in compression or a combined action of it with bending, assume failure 
occurs when the column buckles about the minor axis of its cross section. If the buckling load about the major 
axis is significantly higher than that required to initiate instability about the minor axis, then a situation arises 
at failure, where, much of the buckling resistance about the major axis remains unutilized. An efficient designer, 
would therefore aim to produce simultaneity of buckling about both axes. Structural engineers normally pay 
considerable attention to the selection of sections and arrangement of bracing to achieve such situations. The 
target of the project is therefore, to investigate the development of a theoretical model of biaxial buckling, that 
will be used to evaluate upper and lower bounds to the collapse load. 

1 INTRODUCTION 
In a previous discussion [1] of uniaxial buckling, it was established that the imperfection approach is the only 

rational analysis which can be used to predict accurately the strength of a uniaxial buckling of columns. 
According to this analysis, the column strength in a given direction was found to be a function of the Euler 
critical load and the total equivalent imperfection. 

For a given cross sectional area, an optimum column design, would require that: 
• The critical load is maximized. 
• The total equivalent imperfection is minimized. 
• The buckling strength is the same in all directions. 

The first requirement is dealt with standard structural mechanics text book whilst the second can be achieved 
by improvements in the manufacturing process, the quality of workmanship and loading arrangement in the 
structure. 

The third requirement however, concerning the simultaneity of buckling, is the main subject of this project. 
Whilst it might be impossible to achieve simultaneity of buckling in all directions, it is nevertheless desirable 

to design the columns so that the difference between the maximum and minimum buckling strength is 
minimized. 

This approach to column design, will, inevitably poses basic, yet essential questions about the interaction 
between various buckling parameters. In the rest an attempt is made to find rational answers to some of them.  

2 NOTATION 
Ε Young’s Modulus. 
Μ Bending moment. 
Ρ Applied axial load. 
Ρc Critical load of elastic buckling. 
Pci Euler critical load at the ith mode. 
PE Euler critical load. 
Ρb Buckling load. 
Ρy Squash load. 
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Ρfy Load corresponding to the first yield. 
Ρfh Load corresponding to the first hinge. 
ρ Imperfection parameter. 
ξ0 Total equivalent imperfection. 
Α Cross sectional area. 
Ζ Plastic modulus of the section. 
Ι Cross sectional second moment of area. 
i Mode index, i.e. 1, 2, 3…  
Φ Characteristic shape function. 
Le Effective length. 
w Central deflection. 
wi Maximum deflection at the ith mode. 
w0 Amplitude factor associated with geometrical imperfections. 
wp Amplitude factor associated with proportional loading imperfections. 
wn Amplitude factor associated with non proportional loading imperfections. 
σm Maximum stress on the cross section. 
m Moment ratio factor. 
mp Moment induced by proportional loading. 
mn Moment induced by non-proportional loading. 
Μ Resultant bending moment. 
Mp Plastic moment of resistance. 
Ml Linear moment component. 
u Deflection in the x-direction. 
v Deflection in the y-direction. 
b, d Cross sectional dimensions. 
α, β Curvature functions. Depths of tensile stress blocks. 
xο, yο Coordinates of center of gravity. 

3 THEORETICAL BACKGROUND 

3.1 Failure criterion 
In order to determine the strength of a column buckling biaxially, it is necessary to define a failure criterion at 

which the column will be considered to have failed. For this purpose, the two limiting cases given below are 
adopted, 

i. First Yield Formation, where the column will be deemed to have failed if the stress at some point in a cross 
section reaches the yield value. The load that causes the initiation of yielding in the column, is a lower bound to the 
collapse load.  

ii. First Hinge Formation, where the column will be deemed to have failed if the stress in a cross section, has 
reached the yield value everywhere. The load that causes a plastic hinge to form in the column is an upper bound to 
the collapse load. 

3.2 First Yield Analysis 
Fig. 1 shows a column with total equivalent imperfection (z)xξ  and (z)yξ  in the x and y direction respectively.  
The differential equations of equilibrium are: 
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We can express the deflections u, v along with the total equivalent imperfections ξx and ξy as series in the 
characteristic functions associated with the ith buckling mode in the x and y directions respectively, Φi and Ψi, 
such that, 
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Figure 1: Biaxial buckling of column. 
 

At any arbitrary cross section along the column length, the stress distribution is the resultant of three stress 
components shown in Fig. 2, namely, the direct compressive stress, resulting from the axial compressive load 
and two stress components resulting from non linear moments Mx and My, induced by the imperfections in the 
column. In addition to the three stress components, the effect of any linear moments acting on the section must 
be added, to calculate the maximum stress in the section, which therefore, is given by 

 

 
Figure 2: Stress distribution of cross section 
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where Ml refers to linear moment components.  
Using the expression (45) for the non linear bending moment, given in reference [1], equation (5) becomes, 
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The column will be assumed to have failed when  σm = σy  and a lower bound to the collapse load Pb is given 
by the solution of the equation, 
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Let us now consider the special case of a column with symmetrical end conditions in each direction (boundary 
conditions need not be the same for both directions), where, the contribution of the 1st  mode of buckling to the 
non linear moment is dominant. In a further simplification, we will assume that no linear moments act on the 
column. 

The maximum bending moment in this case, is at the center of the column length. The maximum stress in the 
column is obtained by using the expression for bending moment given in equation (48) [1], and the lower bound 
to the buckling load Pb is 
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where: 
Pcx1, Pcy1: Are the Euler critical load associated with the 1st  mode in the x and y direction respectively 
ξx1,  ξy1: Are the  1st  mode amplitudes of the total equivalent imperfection in the x and y direction respectively 
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are curvature functions, resulting from Eq. (50) [1]. 
Writing equation (8) in non dimensional form, and rearranging we obtain a cubic equation in p, 
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For a given column, the Euler critical loads and the imperfection parameters are known (or assumed), therefore 
equation (9)  can be solved by iterative techniques for the non dimensional buckling load of the column. 

Equation (9) is independent of the shape of the cross section and can be applied to all common sections (I,H, 
Hollow and Solid Boxes). 

When the column is acted upon by linear bending moments, whose maximum value is at the column center, the 
stresses caused by the linear moments must be added to the R.H.S of equation (8). In the case where the maximum 
linear moments occur away from the column center, then it becomes necessary to include the contributions of higher 
modes to the non linear moments [2]. The maximum stress at different sections along the column length must be 
evaluated and a lower bound to the buckling load can be established accordingly. In the majority of cases, it is 
sufficient to include the contributions of the first two modes when calculating the non linear moments.  

A computer program that solves equation (9) using a Newton Raphson routine has been developed. The 
program is intended to establish the extent of interaction between the imperfection parameters, and it therefore, 
produces charts that relate the buckling strength to various combinations of total equivalent imperfections in the 
x and y axes.  

The different curves in the chart represent successive vertical planes through a failure surface which have the 
non dimensional buckling load as a vertical axis (z), and the non dimensional imperfection parameters, as 
horizontal axes (x,y). 
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Figure 3: Imperfection sensitivity failure surface. 
 
The result indicates the existence of significant interaction between imperfections about both axes, leading to 

a reduction in the buckling load. This reduction is quantified by the vertical spacing of the curves. It is clear that 
the reduction in the buckling load is increased as the difference between Pcx and Pcy decreases. The maximum 
reduction corresponds to Pcx = Pcy . 

3.3 Plastic collapse of  biaxially buckling columns 
3.3.1  Elastic plastic interaction 

 The next step in this theoretical development is to define a plastic mechanism by which plastic failure 
occurs in biaxially buckling columns. 

The generalized Ayrton – Perry imperfection approach discussed in reference [1], has defined correctly, the 
non linear response of imperfect columns. In section 3.2, this approach has been extended to cover the case of 
two dimensional buckling, and concluded that for columns which are imperfect with respect to two axes, there 
will be two sets of bending moments about the minor and major axis of the column, both of which are non 
linearly related to the axial load.  
 

 
 

Figure 4: Plastic collapse surface 
 
Let us now define a three dimensional coordinate system, in which the vertical axis (z) represents a non 

dimensional  axial load, and the two horizontal axes (x,y) represent generalized non dimensional bending 
moments about the major and minor axis of the column respectively. The path in space, followed by a point 
representing the above three values of a given column, as the axial load is increased, is referred as the Elastic 
Non Linear Path. This path is a function of the axial load, the Euler critical loads about the major and minor 
axis, the boundary conditions and the imperfection parameters in the x and y direction. 

For a given cross section of the column, there exist a plastic collapse surface that represent all possible 
combinations of axial load and bending moments that can exist in equilibrium with a fully plastic section.  

The point where the elastic non linear path penetrates the plastic collapse surface is an upper bound to the 
collapse load.  
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3.3.2 Plastic Collapse Surface  
Fig. 5 shows the cross section of a column subjected to an axial load P, and bending moments Mx and My 

acting about the x and y axis respectively. The resultant moment M(R), acts about an axis which forms an angle 
θ with the x axis. 

 
 

Figure 5: Trapezium stress block 
 
Three distinct cases [3] of plastic equilibrium can occur and these are analyzed below : 
Case (a): Trapezium Stress Block 
If the column reaches a state of full plasticity, i.e the stresses have reached σy everywhere in the cross section, 

then equilibrium considerations suggest that the column will have a stress distribution similar to that shown in 
Fig. 5 with the central block in compression, the upper block in tension and the lower block in compression, such 
that the latter two blocks constitute a couple equal to the applied resultant moment M(R). The main feature of 
this stress distribution is the assumption, that, lines separating the central compression core and the upper tension 
zone is not necessarily parallel to the axis of resultant moment. 

From the geometry of the section it can be seen that the coordinates of the center of gravity of the lower 
compression block, (xo,yo), are given by 
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Since there are no torsional moments applied, the centers of gravity of the lower and upper stress blocks must 
lie in a straight line NORMAL to the axis of the resultant moment M(R), passing through the C.G. of the cross 
section. This condition is referred as the Normality Condition . 

The slope of this Normal is -cot(θ); if we put m = tan(θ), then the equation of the Normal is  
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The block's center of gravity lies in this line and, therefore, (xo,yo) must satisfy equation (11), i.e. 
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After simplifying, and putting  n = b/d, equation (13) becomes 
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Equation (14) defines the necessary condition for the section not to experience torsional moments. 
Equilibrium of axial forces of the column gives 

[ ])(1 βσ +−= abdP y  (15)

Taking moments about the C.G of the upper tension block we obtain 
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Taking also into account the relations 
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Equations (15), (17) and (18) can now be written in a non-dimensional form as 
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where bdP yy σ=  is the squash load, and 

4

2bdM xpx σ=   and  
4

2bdM ypy σ=  

are the plastic moments of the cross section in the x and y directions respectively. 
Case (b): Triangular Stress Block 

When the ratio m = My /Mx  of the applied bending moments is high, the section, reaching the state of full 
plasticity, develops a triangular stress block, as shown in Fig. 6. 

In this Figure, the coordinates of the center of gravity of the triangular section (Xo,Yo) are respectively 
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The equation of the NORMAL  to the axis of the resultant Moment is 
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Since this normal passes through the centroid of the section, the point (b/2, d/2) must satisfy its equation.  
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Figure 6: Triangular stress block 
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Substituting n = b/d  and simplifying, yields 
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where  1),(0 ≤≤ βa . 
Considering equilibrium conditions similar to case (a), we obtain: 
Equilibrium of axial forces 
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Moments about C.G. of upper stress block 
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from where eventually the non-dimensional moments Mx and My are obtained 
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Case (c): Reversed Trapezium Stress Block 
If we keep on increasing the bending  moment ratio m = My /Mx, then the section stress distribution takes the 

shape of a reversed trapezium block like the one shown in Fig. 7. 
The coordinates of the center of gravity, are in this case 
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From the normality condition and the fact that the normal passes through (b/2, d/2) we obtain 
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Substituting n = b/d and simplifying, yields 
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A similar procedure for forces and moments equilibrium  gives the following equations 
 

 
 

Figure 7: Reversed trapezium stress block 
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which, in non-dimensional form, are expressed as 
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respectively. It should be noted that these equilibrium equations are similar to those obtained in case (a), with b 
and d interchanged, hence the term Reversed Trapezium block. 

For a given value of  n = (b/d), moment ratio  m = (My/Mx) and load factor  p = P/Py, the Normality equations 
(14), (25) and (32) along with the Force equilibrium equations (19), (26) and (33), constitute, for each case of 
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stress block separately, a pair (set) of simultaneous second order equations in α and β. Solving these three sets 
for α and β  and choosing the set that satisfies the geometric conditions given in paragraph 4, the corresponding 
bending moments about both axes can be calculated.  

The Normality equation can be expressed as a function f(α,β,n,m) = 0  and    
The Force Equilibrium equation is a function g(α,β,p) = 0. 
The bending moment corresponding to the calculated values of α and β is an Upper bound solution to the 

collapse combination. 
By changing the value of m = (My/Mx), and then, for each new value of m, changing  the value of non 

dimensional load p=P/Py, a series of upper bound combinations, between loads and moments, can be calculated 
and plotted to represent the upper bound envelop of failure. 

These calculations are best performed by a computer program having the following algorithm: 
1. Select a value of  n = b/d envelope  
2. Set an initial value of m = My/Mx. Note that x is the major bending axis  
3. Initialize the non-dimensional load factor p to p = 1, solve the Normality equations  and the Force 

equilibrium equations for each one of the cases (a), (b) and (c) to find α and β. Eventually, 3 maximum pairs of 
values for α and β will be obtained. 

4. Those sets of (α, β), which satisfy the geometrical conditions stated below, are then used to calculate the 
bending moments. The smallest moment - in the event that more than one set of (α, β) satisfy the geometrical 
conditions - is the upper bound solution to the collapse moment. The geometrical conditions are : 
 (i) For cases (a) and (c), (Trapezium and Reverse Trapezium Block)  

   0, ≥βa   and 1≤+ βa  
 (ii) For case (b), (Triangular Stress Block) 
   10 ≤≤ a   and  10 ≤≤ β  
5. Decrease the value of p and repeat steps 3 To 5 until p = 0. 
6. Increase the value of m and repeat steps 2 to 6 until all possible values of m have been taken. 

4 CONCLUSIONS 
The following conclusions may be reached from this project, 
1. The imperfection approach to column buckling is the only rational method that can be used to analyze and 

design real columns. 
2. Significant reduction in the load carrying capacity of columns can be expected when the column strengths 

about the major and minor axes are close to each other. 
3. Biaxially buckling columns can not be designed safely by using conventional column curves 
4. Availability of cheap, fast and efficient computers suggests alternative approaches to column design, with 

less emphasis on empirical formulae and more emphasis on rational thinking  
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