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Abstract 

Many buckling design procedures for framed structures, having the possibility 

of sidesway, implicitly encourage engineers to attain a state, where for any column, 

considered as part of the frame, two buckling modes, sway and non-sway, occur 

simultaneously. 

This research aims to develop a design methodology which takes into account 

the stiffness and strength interactions between a beam-column and its surrounding 

frame for both non-sway and sway modes. It extends past treatment of the elastic-

plastic buckling in a single mode to circumstances where more than one mode 

contributes to the non-linear elastic behaviour and consequently elastic-plastic 

failure. To capture the multi-mode buckling behaviour it is shown that more than 

one imperfection must be considered. Two interrelated approaches have been 

developed. 

Theoretical developments aim to provide: 

• general expressions for calculating the rotational and translational stiffnesses 

of an idealised sub-frame to be employed in the general analysis procedures; 

• complete Eigenvalue analysis for the column, where the stiffness of its 

surrounding frame is taken into account; 

• generalisation of the Ayrton - Perry analysis for elastic-plastic buckling to 

the case where two active elastic buckling modes, controlled by two independent 

imperfection parameters, are involved. This requires development of a new 

simplified design procedure; 

• computer software suitable for providing a simple, convenient, but accurate 
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design for single or multi-mode buckling. 

An experimental programme has been designed to: 

• provide a force controlled test rig which allows independent control of 

vertical and horizontal load levels required to cover a wide parametric range; 

• allow an extensive test programme on different frame geometries to assess 

the validity of the theoretical model developed for both sway and non sway buckling 

modes. 

An assessment of the provisions in existing design procedures for multi-mode 

buckling shows that even where this is treated, it provides an inadequate prediction 

of buckling capacity. The alternative model developed is suggested to provide a 

practical and realistic method for multi-mode buckling phenomena. 
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Notation 

A summary of the more important symbols used in the text is presented here. 

All symbols, however, are also defined as they first appear in the text. 

A Cross-sectional area. 

At Arbitrary constant of the solution of the differential equation. 

Au Ratio between an arbitrary constant A; and A, . 

C Rotational spring constant. 

c Distance of the extreme fibres from the centroidal axis. 

E Elastic modulus. 

e Eccentricity of the applied load. 

Er Reduced modulus. 

Es Slope of the stress-strain diagram in the strain hardening portion. 

Et Tangent modulus. 

H Horizontal load. 

/ Moment of Inertia. 

Κ Translational spring constant. 

*, kci JPJEl, JPJËI . 

L Length of column. 

Le Effective length (=yL). 

M Total bending moment. 
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M1 Linear bending moment. 

M Equivalent moment. 

Me 1 Equivalent moment due to end moments in the absence of transverse 

forces. 

M0 Maximum end moment. 

Mol Largest bending moment in the column due to transverse loadings. 

M Plastic moment of capacity (= So ). 

M Plastic moment capacity in the presence of axial load. 

Mu Strength of the member under bending moment alone. 

M Yield moment (= Za ). 

mA > mB End-resistant moments. 

mA, mB End moments in a general mixed system of loading obtained from a 

linear analysis. 

Ρ Axial load. 

Pb Buckling load. 

P„ The lowest elastic critical load. 

( P. 

c 

Dimensionless ratio of the first two coinciding critical-loads 
V ' , / 

Ρ . Elastic critical load of the ith critical mode. 
Cl 

Ρ' Elastic critical load of the column as a part of a frame without sway 

(braced). 

Pcs Elastic critical load of the column as a part of a frame with sway 

(unbraced). 
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PE Euler load. 

P„ First hinge load. 

P, First yield load. 

Pt Tangent modulus load. 

Ρ Axial compression capacity of an axially loaded column proposed by 

design codes. 

Ρ Squash load in the absence of bending moment (= a A ). 

pv p2 Non-dimensional load at first yield and full plasticity 
( Ρ Ρ \ 

• ΖΛ ZA 
' Ρ' Ρ 

\ y y ) 

ρ , ρ The first two non-dimensional critical loads 
( P.. Ρ 

es en 

, Ρ Ρ 
\ y y 

qn(x) Transverse load in a non-proportional loading system. 

qp(x) Transverse load in a proportional loading system. 

C 
r Radius of gyration; dimensionless constant (= ). 

El/L 

S Plastic section modulus. 

Τ Tangent modulus (=da/de). 

t Dimensionless constant (= ). 
EI/L3 

u, w Beam-column displacement components. 

w Total deflection. 

w ° Equivalent initial deflection. 

wi Amplitude factor of the ith critical mode. 
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η 

wt Modal non-proportional loading imperfection. 

w° Modal geometric imperfection. 

wf Modal proportional loading imperfections. 

w^ ith amplitude of proportional loading imperfections for a unit axial 

load. 

X, W Local rectangular Cartesian coordinates. 

x, w Global rectangular Cartesian coordinates. 

Z, Zp Elastic, plastic section modulus. 

α Numerical coefficient characterizing each one of the SSRC column 

design curves; Robertson's constant; curvature parameter associated 

with the sway critical mode. 

a v Ct2, ct3 Parameters relating the axial load and bending moment in the ultimate 

strength method for non-rectangular cross sectional shapes. 

γ Effective length factor. 

β Curvature parameter associated with the non-sway critical mode. 

δ Measured deflection obtained from experimental results (= w~w°). 

e Axial strain. 

ζ ί Modal equivalent imperfection factor (= w°+w?+w"). 

η Factor involved in the stiffness of the theoretical model (= EI2/L2). 

θ, θ^, QB Angular rotations. 

λ Slenderness ratio. 

λ j Limiting slenderness ratio when σ £ = σ (=KJEja ) 

xvi 



λ Dimensionless slenderness ratio (= λ/Àj ). 

λ Elastic critical load factor. 
cr 

λ. Failure load factor of an elastic-plastic structure. 

* * 

λ0 Limiting slenderness ratio (= π JEJa ). 

λ Idealized rigid-plastic failure load factor, 

ξ. Total modal equivalent imperfection. 

ρ Imperfection parameter. 

p s , p n Elastic dimensionless imperfection parameters corresponding to the 

sway and non-sway critical modes. 

ps, pn Elastic-plastic dimensionless imperfection parameters corresponding 

to the sway and non-sway critical modes. 

σ Average compression stress (= P/A). 

aE Average Euler stress(= PE /A). 

a Axial compression stress capacity of an axially loaded column 

proposed by design codes. 

σ Proportional limit stress. 

σ Yield stress. 

φ ί (χ) Characteristic function of the ith critical mode. 

φ((χ) Normalized characteristic function of the ith critical mode. 

φ; (x) Curvature. 
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Chapter 1 

Multi-mode Buckling Phenomena 

1.1 Historic Highlights of Buckling 

The behaviour and design of steel members and frames has long been the 

subject of research for a number of researchers. 

Regarding the strength of struts, the first paper was published in 1729 by Van 

Musschenbroek1. He recognised that the strength of a long column relates inversely 

to the square of the column length. His work was empirical, based only on 

experiments. 

Euler, in 1759, published his famous paper where he investigated the elastic 

stability of a centrally loaded isolated strut using a mathematical approach which is 

known as the Bifurcation or Eigenvalue approach. Under the assumptions that the 

member is perfectly straight, the material is fully elastic and the deflection is small, 

a linear differential equation can be written based on the slightly deformed geometry 

of the member. 

The eigenvalue solution which emerges from the characteristic differential 

equation gives the critical load of the strut. This load appears when bifurcation of 

equilibrium takes place. At this level of load, the originally straight member ceases 

to be stable. At and above this load a small lateral displacement will no longer 

disappear when the disturbance is removed. This load, is referred to as the critical 

load or Euler load, and is given by 

PE = **L (1.1) 
(KLf 

where : 

/ : is the second moment of area of the cross section 
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L : is the unbraced length of the member 

Κ : is an effective length factor to account for the end conditions of the 

member. 

This formula gives a good prediction for the behaviour of slender columns 

provided the axial stresses in the member do not exceed the proportional limit, and 

the member remains fully elastic. 

Although the most recent developments have been based on Euler's formula, 

there was considerable debate following its establishment. The experimental work 

at that time showed that columns not only bent from the onset of loading but also 

failed under loads much less than Euler's limiting load. Investigators following Euler 

soon abandoned his formula concentrating instead on stocky columns for which the 

onset of plasticity was the controlling influence on buckling. However, little 

additional progress was made for the next five decades. 

It was Young2 in 1807 who realised that if the column was originally bent, 

any axial load, however small, would increase the curvature. He attributed all kinds 

of irregularities observed in experiments to unavoidable initial strut curvature, 

material non-homogeneity and eccentricity of loading. He pointed out that under 

Euler's assumed conditions the column should remain straight even if the load 

should exceed the critical one. 

Furthermore, he established formulae giving the total deformation of the 

axially loaded strut in terms of either the initial deflection or eccentricity. In 

conclusion he derived a load limit at which struts would crush rather than buckle. 

In 1845, Α. Η. E. Lamarle3 pointed out that Euler's formula should be used 

only for slenderness ratio beyond a certain limit and that experimental data should 

be relied upon for smaller ratios. 

The most important and essential development in buckling was actually done 

in 1886 by Ayrton and Perry4. They found that the effect of eccentricity is the same 

as that of the initial curvature, and any probable want of homogeneity in specimens 
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might also be accounted for by a term of the same kind. So they suggested an 

equivalent initial deflection, w°, to be taken into account. Under the assumption 

that w ° has a sine form in a column, they found the total deflection to be 

1 w = w 
ι IL ( 1 · 2 ) 

ρ. 

where Ρ is the axial force and PE is the Euler load. They rearranged Eq. (1.2) as 

1 . V i JL (1.3) 
δ w° Ρ W r W ο 

where δ = w - w ° is the measured deflection at the mid-point of the strut obtained 

from experimental results, and they noted that Eq. (1.3) represents a linear 

relationship between l/δ and IIP, allowing experimental evidence to be interigated 

to determine the controlling critical load PE and equivalent imperfection w °. This 

approach later recast by Southwell (1926), was used by Ayrton and Perry to 

reinterpret and explain many of the earlier experiments on strut buckling, such as 

those of Hodkinson5 (1840, 1857, 1860). As an index of buckling they limited the 

total stress on the extreme fibre of the cross section (sum of stresses due to axial 

load and bending moment), to that of the yield stress of the material. The buckling 

strength, P^, of the strut calculated by this procedure, was found to be a function of 

the elastic critical load, PE, (Euler load), the squash load, Py, (axial load required to 

produce a plastic section in the absence of bending moment) and the equivalent 

initial imperfection, p. This strength is given by the equation 

(VV(VVaPVi ( L 4 ) 

Adaptations of this expression now form the basis of most modern codes of practice 

on column design. 
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In 1889, the French engineer A. Considère6 performed a series of 32 tests 

on columns. He observed that the stresses on the concave side of the column, 

(according to explanations given in Appendix A, section A.l), increased with the 

tangent modulus, Et, while the stresses on the convex side decreased with E. He 

showed, therefore, why the Euler formula was not applicable to inelastic buckling, 

and he stated that the effective modulus, Er, was between E and Et. Although he 

made no attempt to evaluate the effective modulus, he is responsible for beginning 

the reduced-modulus theory. 

In the same year, quite independently, the German Engineer F. Engesser7 

suggested the tangent-modulus theory (see Appendix A, section A.l). He denoted 

the tangent modulus by Τ (=da/d£) and proposed that for the critical load, Τ be 

substituted by E in Euler's formula. Later, in March 1895, Engesser again presented 

the tangent modulus theory8, without knowing of Considère's work. 

Three months later the Polish-born F. Jasinski, then a Professor in St. 

Petersburg, pointed out that Engesser's tangent-modulus theory was incorrect, called 

attention to Considère's work, and presented the reduced-modulus theory9. He also 

stated that the reduced modulus, Er, could not be calculated theoretically. In 

response, and only one month later, Engesser acknowledged the error in the tangent 

modulus approach and showed how to obtain the reduced modulus for any cross 

section10. 

The reduced-modulus theory was also presented by Theodore von Karman in 

190811 and 191012. In the latter paper he derived formulas for Er for rectangular 

and idealized wide-flange sections (i.e. sections without a web). He extended the 

theory to include the effects of eccentricities on the buckling load, and he showed 

that the maximum load decreases rapidly as the eccentricity increases. 

The English elastician R.V. Southwell also presented the reduced modulus 

theory. In his paper in 191213 he derived the theory using a modified length for the 

column instead of a reduced modulus for the material. His work was independent 

of the others although the basic concepts were similar. In 1932 he made a correct 



Chapter 1 - Multi-mode Buckling Phenomena 5 

evaluation of the initial deflection w° used initially by Ayrton and Perry. Rearranging 

eq. (1.3), yields 

δ = PF-~-w° (1.5) 
Ε ρ 

which shows that if values of δ are plotted against δ/Ρ, they should fall in a 

straight line, with an intercept of δ axis equal to w° and a slope PE. In 

experiments reported by von Karman for slender columns, the best fitting line for 

each set of data was drawn and the slope of this line was compared with the Euler 

theoretical load, where, a very close agreement was observed. This clever method, 

apart from verifying the validity of what was found by Young and Ayrton and Perry, 

is a convenient way of experimentally deducing the equivalent imperfection of a 

column. 

Having obtained the correct value of geometric imperfections, the strength of 

a column can be calculated from the Ayrton-Perry formula, Eq. (1.4). A comparison 

between this strength and the failure load obtained experimentally would then be the 

only consistent approach of verifying the above formula. 

The reduced-modulus theory was the accepted theory of inelastic buckling 

until 1946, when the American engineer F. R. Shanley pointed out the logical 

paradoxes in both theories. In a remarkable one-page paper14, he explained what 

was not correct with the generally accepted theories and proposed his own theory 

that resolved the paradoxes. Five months later, in a second paper15 he gave further 

analyses to support his earlier theory and gave results from tests on columns. 

1.2 Scene Setter 

Buckling design analysis has been approached many years ago with the aim 

to mainly assess the load carrying capacity of a given column on the basis of its 

geometric and material data. 
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In a brief description, the process, which can generally be followed on this 

approach, for columns where there is just a single buckling mode actively controlling 

their behaviour, could comprise as basic steps 

a) In the theoretical field, based on the boundary conditions of an imperfect 

column 

1) The determination of elastic critical load for each mode. This load can be 

obtained as the Eigenvalue of the characteristic equation which comes from the 

governing differential equation, written with respect to the deformed configuration 

of the structure. 

2) Tracing the curves which express 

i) the total deformation of the column in terms of its total initial 

equivalent imperfection (geometric, loading), critical load and current axial load, 

ii) the deformation corresponding to a full section plasticity of the 

column in terms of its squash and current axial load, 

a close upper bound estimation of the buckling load at full plasticity can be obtained 

as an intersection point of the above two curves. 

b) Experimentally 

1) In the elastic region, by recording the axial load along with the lateral 

displacement, the elastic critical load and the effective imperfection can be obtained 

through the Southwell Plot technique. 

2) In the elasto-plastic region up to collapse, the maximum load carrying 

capacity appears at the moment that comparatively large deformations have been 

developed without any increase of the corresponding axial load. 

However, in the design procedure of a structure, it is usual to design separate 

components with a consistent factor of safety. This factor might be less than 

expected if spread of plasticity along the member length is disregarded; nevertheless 

this reduction is usually very low and reasonable because the structure is modelled 
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in a manner that all the beams remain elastic, while in all columns the first plastic 

hinges occur simultaneously. 

This mechanism is considered to be a collapse one, although might still be 

able to carry more load up to the actual collapse state. 

While this approach is widely acceptable, there might be some cases, where, 

under certain conditions, a situation can be developed, in which the separate 

buckling modes actively interact with each other. This happens in the case of biaxial 

buckling or in a column considered as a part of a frame having the possibility of 

side sway. 

These circumstances are not adequately covered by the present design 

practice, where the whole mechanism by which failure takes place is not clear 

enough. A lot of emphasis is put on slenderness of columns, where only linear 

analysis is considered, whilst less attention has been paid to imperfections without 

any reference in structures with more than one degrees of freedom. 

1.3 Structures with one or more degrees of freedom 

A structure that presents one or more degrees of freedom has by definition 

a configuration which at any instant of time can be completely defined by one or 

more independent co-ordinates, where one or more measurements are required, such 

as a displacement or an angle. 

In practice, virtually all structures usually require many degrees of freedom 

to define their response. However, with some simplifying assumptions, many such 

structures can be regarded as having fewer, or even only one, degree-of-freedom. 

In the portal frame for example in Fig. 1-1 (a), the swaying motion of the 

rigid horizontal member is defined by the displacement Δ,, and the frame can be 

regarded as having only one degree, of freedom. Similarly in the η-storey frame of 

the same figure with horizontal rigid members, the structure is assumed to sway only 

in its plane without rotation of joints. For a complete definition of the configuration 
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-Η \~ΔΠ 

Η \~Δι 

(a) 

in-1 

Αι 

(b) 

Figure 1-1 

of the structure, η independent coordinates, (Aj to Δη inclusively) are required; thus 

it has η degrees of freedom. Examples of one or two degrees of freedom could also 

be the buckling phenomenon of isolated columns, regarded in one or two directions 

(uniaxial or biaxial buckling), where the final configuration can be defined by one 

or two coordinates respectively. 

When buckling is considered in a structure possessing many degrees of 

freedom, the resulting phenomenon may involve a multi-mode buckling. Multi-mode 

buckling phenomena may in turn involve a number of different forms of buckling 

modal interactions. 

1.4 Modal Interactions 

As a phenomenon, buckling appears generally in beam-columns, where a 

large number of modes takes place. The level of critical load is one of the main 
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characteristics for each mode. The mode corresponding to the minimum critical load 

is the most crucial from the point of view that it may substantially affect the overall 

response of the beam-column. This response might also be partially affected by the 

subsequent critical load, in particular when this subsequent value appears to be close 

to the previous one. 

To take an example, beam-columns always present a possibility of buckling 

in two directions, coinciding with the two axes (major and minor) of their cross 

section. These two directions are identical with the column's so called 'two degrees 

of freedom' in the sense that the column may buckle in planes containing these 

directions. Depending on the geometry of the beam-column and specially of its cross 

section, the levels of the first critical loads, corresponding to each one of these 

directions, might be different or close to each other. For identical boundary column's 

conditions and significant difference of critical loads, the critical buckling mode is 

the one about the minor axis; the overall design, based on the characteristics of the 

column with respect to this axis only, leads to the buckling strength of the column, 

while a large amount of the buckling resistance about the major axis remains 

unutilized. However, in the case where the critical loads of the two directions are 

close to each other, (and this is a point that structural engineers normally pay 

considerable attention), a simultaneity of buckling might occur about both axes. 

An interaction of both buckling modes which takes place here, results in a 

possible reduction in the load carrying capacity of the beam column. Depending on 

the surrounding the beam-column frame and its boundary conditions, this modal 

interaction might be weak or strong and take place as an elastic or plastic buckling 

phenomenon. The following examples illustrate these cases, which are classified in 

the subsequent subsections. 

1.4.1 Elastic Buckling 

The interaction here is taking place before the initiation of yielding in the 

beam-column and might be either weak or strong. 
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a) Weak Interaction 

Consider an axially loaded column as a part of a frame having the possibility 

of sway, or equally a beam-column subjected to biaxial buckling. Let us assume that 

the first two critical loads in both cases are reasonably close to each other. 

undeformed 
deformed 

Figure 1-2 

Under a monotonically increased loading system, development of one 

buckling mode does not affect the buckling of the second mode. Consequently 

this case may well be considered in terms of the superposition of the contributing 

modes. Fig. 1-2 shows the modelling for this case and the characteristic 

deformations of the column for both degrees of freedom versus the applied axial 

load. 

The heavy curve, represents the resultant of the two curves made up of the 

two deformations Ql and θ2 separately. It has a projection on the P-Bj plane, which 

is very close to the θι (say) mode, due to the weak interaction of the other (θ2 
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mode). 

b) Strong Interaction 

As a representative example of a strong interaction in the elastic buckling, 

can be considered a radio mast built in the form of a space-truss. Here, the two 

modes of buckling, expressed by the corresponding degrees of freedom, may be 

represented as the overall mode, referring to the beam-column as a whole structure, 

and the local mode, corresponding to each member of the structure separately, with 

critical load values which are reasonably close to each other. Fig. 1-3 shows 

schematically how these two modes relate to each other, while Fig. 1-4 provides the 

basic modelling for obtaining each one separately and the characteristic deformation 

of a local member participating to both local (9L) and overall (θ0 ) distortions. 

actual equil. path 

projection with interaction 

behaviour with no interaction 

Figure 1-3 

Once again the heavy-line represents the resultant of the interaction between 

the two deformation modes (overall and local); it has projections onto either the Ρ-θ0 
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Modeling 

Overal Local 

Figure 1-4 

or the P-9L plane, that are very different from those that would occur (shown dotted) 

if either one of these modes were acting alone. This is in contrast with the behaviour 

exhibited in the example of Fig. 1-2. 

This is an example in which the development of one mode (the overall 

mode) generates additional axial compression force which exacerbates the 

development of buckling in the second mode (local mode). Alternatively, this form 

of strong interaction could be interpreted as a situation in which the development 

of the second mode (the local mode) reduces the axial stiffness of the flange and 

hence weakens the resistance to the buckling into the first mode (the overall 

mode). Either way the modes interact strongly, with the effect that a highly unstable 

form of imperfection sensitive buckling can ensue. 

An important example of strong interaction between the overall and local 

buckling modes, is believed to have occurred in the collapse of Quebec Bridge 

(1907). The main frame of this bridge, having the form of a doubly braced truss 
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(a) 

Local 
buckling 

Section 

Portion of 
lower member 

Overall buckling 

(b) 

Figure 1-5 

shown in Fig. l-5a, had at the supports, as lower compression members, beam-

columns built from flat strips laminated and tied together at discrete locations along 

the length as shown in Fig. l-5b. Due to the strong elastic interaction between the 

overall and local buckling that took place on these single and composite members, 

there was a reduction in the ultimate load carrying capacity with the result that entire 

cantilevered span collapsed just prior to the completion of erection. 

1.4.2 Plastic Buckling 

The interaction here takes place after the initiation of yielding while the 

beam-column shows an elasto-plastic behaviour and again might be either weak or 

strong. 

a) Weak Interaction 

Let us again consider a beam-column as part of a frame which has the 
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2)1 

7® 
Sway plasticity 

t© 
Non - sway 

Figure 1-6 

possibility of sidesway. For a certain stiffness of the surrounding frame, where the 

first two critical loads are close to each other, if the column presents only non-sway 

(out of straightness) imperfections, its plastic failure, as a result of the buckling 

development in this mode, will not affect the plastic failure in the other (sway) 

mode. This is because the plastic hinge (1), formed due to the maximum bending 

moment, responsible for this failure, occurs at or near the middle of the column, 

where the corresponding moment for the other mode is almost zero. 

Similar thoughts can be applied for the case where the column presents only 

sway imperfections, except that the maximum moments and consequently the first 

hinge(s) (2), (3) occur at the end(s) of the column. 

Fig. 1-6 shows the location of plastic hinge formation due to a separate 

buckling development in each mode. 

Therefore for a gradually increasing loading system, the plastic failure in 

mode 1 has little effect on the plastic failure in mode 2. 

b) Strong Interaction 

The previous case, in the presence of both imperfections has a different 
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Figure 1-7 

response. The maximum bending moment, as shown in Fig. 1-7, is affected 

differently by each mode according to its associated imperfections; failure could be 

initiated somewhere near the middle or at the ends of the column. In this case 

therefore plastic failure in mode 1 could interact strongly with the plastic failure 

in mode 2. 

1.5 The Scope of this Project 

The modal interactions discussed in the preceding section coupled with the 

buckling developments by Ayrton and Perry lead to the conclusion that the main 

parameter affecting the load carrying capacity of a given beam-column is its initial 

imperfections and the ratio of elastic / squash load. The term imperfections involves 

any physical shortcomings appeared at random in the beam-column, along with 

deflections coming from any lateral loads and/or bending moments applied prior to 
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the application of axial loading. Unless these imperfections are properly taken into 

consideration, there is no consistent approach for calculating the strength of the 

column. In the absence of the above imperfections an axially loaded column is 

merely a perfect column which fails due to either elastic stability or material failure. 

Following this line of thought, in the case where a beam-column exhibits two 

buckling modes, sway and non-sway, a total equivalent imperfection parameter 

(TEI), that embraces both geometric and loading imperfections is introduced for each 

mode. Based on this parameter, the design of the beam-column becomes consistent, 

allowing interaction between elastic stability and plastic collapse. 

The magnitude of geometrical imperfection is random, depending on the 

manufacturing process and the quality of workmanship; the loading imperfections 

can be evaluated through a linear analysis neglecting the effects of axial load. 

The main objective of the present work is to provide a framework for the 

evaluation of each TEI and its use in an extended form of the Ayrton-Perry formula; 

this allows a more generalised form for beam-columns with two or more active 

buckling modes. To this end special consideration is given to the development of 

analyses that are sufficiently simple and might be used in design offices. 

The historical developments on beam-columns and the shortcomings of the 

current design methods are discussed in Chapter 2. 

The concept of elastic buckling in idealized rigidly jointed frame models is 

presented in Chapter 3. This involves the definition of several idealized models for 

frame analysis, which may or may not include sway. The idealized model used for 

obtaining a design formula in the sway case is also presented along with the case 

of a braced idealized model. 

In Chapter 4 the non-linear elastic response is related to that of the simplified 

linearised model. This leads to the definition and use of each TEI which allows 

complete specification of the non-linear elastic response of the column. A theoretical 

background on imperfect columns is also added in this Chapter. 
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The interaction between elastic nonlinearities and plastic collapse in the 

presence of imperfections is outlined in Chapter 5. Presented in this Chapter is also 

the generalized Ayrton-Perry formula. 

Chapter 6 outlines the experimental procedure adopted for tests on a properly 

justified frame model. It shows the possibility of predicting the collapse load through 

a known imperfection parameter for each mode. 

The experimental verification of this parameter through the Southwell Plot, 

together with comparisons of test results with theory are presented in Chapter 7. The 

theoretical results are obtained through an extended computer program made for this 

purpose. 

In Chapter 8 some existing design methods are outlined and a new simplified 

procedure is proposed. 

Final conclusions and recommendations for further studies are incorporated 

in Chapter 9. 



Chapter 2 

Beam-Cólumn & Frame Buckling 

2.1 Beam-Columns under General loading 

A member is termed a beam-column when it is subjected to both axial 

compression and bending moment. The latter may arise from transverse loads acting 

on the member, from couples applied at any section, and/or from end moments 

resulting from eccentricity of the applied axial loads at one or both of its ends. In 

a rigid jointed frame, this moment may be generated as a result of frame action in 

resisting the applied loads. Before any discussion of columns as components of 

rigid-jointed frames, a brief description on the strength of isolated beam-columns 

will be developed. These columns are assumed to be under a known system of 

loading, where the plane of loading is identical to the plane of actual buckling. 

When a beam-column is subjected to a gradually increasing system of 

loading, it initially resists the applied loads in a purely elastic way. However, when 

the load reaches a certain level, called first yield load, the extreme fibres at some 

location will start to yield. From this point onwards the section behaves inelastically 

causing deformations at an ever-increasing rate. The maximum load carrying 

capacity is reached when the member, having formed the first plastic hinge(s), 

continues to deform at no increase of the applied loading. 

Analytical solutions to the estimation of strength of such members have 

followed one of the two methods: 

a) The elastic method (working stress criterion) and 

b) The elastic-plastic method (ultimate strength criterion). 

The first method is based on the idea that a lower bound to the actual 

collapse load can be realised by using the elastic limit value, whereas the second 

method requires the determination of the actual load-deformation response of the 

member in the elastic-plastic regime of behaviour under increasing applied loads. 
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Aiming to clarify the difference the two kinds of analytical solutions, both methods 

are discussed in the next sections along with some interaction formulae. 

2.2 Working Stress Criterion 

The problem of eccentrically loaded columns was tackled as a stress problem, 

where, the axial failure load was considered to be that which caused at the extreme 

fibres initiation of yielding. On the assumption that the material remains linearly 

elastic up to the yield point, the deflection of the member can be determined in 

terms of the applied load and its eccentricity. The action of axial load on the 

deflection, however, causes additional bending moment. In the cross section where 

the maximum bending moment of the member occurs, the maximum compression 

stress in the extreme fibres is expressed by the sum of the stress due to axial load 

and due to bending moment. In the case where the end axial loads Ρ are applied 

with equal eccentricities e this approach yields the so called Secant formula 

Ρ 
σ = — 

max i 

where c is the distance of the extreme fibres from the centroidal axis. Since the 

formula in the absence of eccentricity is reduced to a pure compression formula, an 

equivalent eccentricity e0 is introduced so that the effect of any initial imperfection 

can be taken into account. The secant formula takes thus the form 

Ρ 
a = — 

max A 

For the purpose of design, the average stress PIA is taken by limiting the 

maximum compression strength to the yield stress. By the same procedure, for the 

case of unequal end eccentricities, a more comprehensive solution can be carried out. 

1 + 
/ \ ec 

sec 2Λ AE 
(2.1) 

1 + 

({e+e0)c\ 
sec 2r\ 

_P_ 
AE 

(2.2) 
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This was given by Young and is fully presented by Timoshenko . 

The accuracy of the above approach for a practical estimation of the strength 

of beam-columns has been checked by Austin18 for cases of equal eccentricities. 

He assumed that the effect of initial imperfection for these tests would be negligible 

and concluded that the first yield criterion may considerably underestimate the 

ultimate strength of short beam-columns with solid cross sections bent in the weak 

direction. 

2.3 Ultimate Strength Criterion 

In order to determine the ultimate load capacity of a beam-column the real 

deformed shape has to be traced during the loading. This can only be done when the 

relation between the internal bending moment and the curvature of the member has 

been established. This relationship is linear for elastic behaviour of the column 

otherwise it becomes non-linear. The internal bending moment, being the sum of 

moments due to applied loads and due to the interaction between axial load and 

lateral deflection, is a linear function of displacement. If this function is replaced 

into the moment-curvature relation, a linear or non-linear differential equation can 

be obtained, depending on whether an elastic or inelastic behaviour is assumed. A 

direct integration of this equation yields the deformed shape of the column. While 

this integration is straightforward for the elastic range, it becomes very complicated 

when the column exceeds the elastic limit. 

A considerable amount of research has been dedicated to the problem of 

inelastic behaviour of beam-columns. Among the researchers who contributed to that 

problem were Karman12 in 1910, who was the first to investigate numerically the 

inelastic behaviour of rectangular cross sections loaded with small eccentricities. His 

work was continued by Chwalla19 on columns with different loading conditions and 

shapes of cross sections. 

Jezek20 in 1936, was the first to develop an analytical method on 
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eccentrically loaded columns of rectangular cross section beyond the elastic limit. 

Assuming elastic perfectly plastic material response, he established the moment-

curvature relationship along the column's length. 

Home21 in 1956, following the same procedure, gives the moment-curvature 

relationships of a rectangular cross section made of an elastic perfectly plastic 

material, with a finite drop of stress at yield. Making use of these results he showed 

the determination of the collapse load without having to resort to numerical 

procedures. 

Galambos and Ketter22 in 1959, studied the ultimate carrying capacity of 

pin-ended wide flange beam-columns. Following numerical procedures they 

considered two loading conditions, where, a bending moment is applied only at one 

end as well as equal end moments are applied to both ends. In their calculations a 

symmetric residual stress pattern was assumed, but no use of initial imperfection was 

made. 

An alternative long-standing numerical method for the study of elasto-plastic 

behaviour of beam-columns failing due to bending was given by the column 

deflection curves (CDCs). In each family of these curves each one corresponds to 

the equilibrium of a simply supported column with different length, deflected under 

a constant axial load. If a suitable portion of the CDCs is considered, the different 

deflected shapes of a given beam-column for the different stages of bending 

moments can be obtained, provided the column's axial load is the same as that of 

CDCs. The concept of CDCs was first used by Karman and developed further by 

Home and many other investigators. 

The differential equation of equilibrium is usually expressed in terms of 

lateral deflection of the column. For a direct integration of this equation beyond the 

elastic limit, Chen and Santathantaporn23 remarked that the curvature of an elastic-

perfectly-plastic column loaded eccentrically plays exactly the same role as the 

deflection. This consideration allows simpler solutions for the maximum loading 

capacity which may be obtained with fewer necessary steps. Theoretically obtained 
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results of these curves were compared with existing solutions and a good agreement 

was observed. Chen continued this work and later derived interaction curves relating 

the axial thrust, lateral load and slenderness ratio with various values of end 

eccentricities. Again this work was extended with expressions for the moment 

expressed explicitly in terms of curvature for different cross sections including the 

influence of residual stresses. 

To solve the problem of elastic-plastic behaviour of beams-columns Chen and 

Atsuta24 used column curvature curves (CCCs) obtained analytically in a similar 

way to the CDCs. They also gave interaction relationships between thrust and end 

moment for their ultimate strength. 

2.4 Interaction Formulae 

In the previous section several methods for obtaining the load carrying 

capacity of a beam-column were described. Even for simple cases the solutions 

required time consuming and intensive computational work. For this reason over the 

past five decades different researchers have tried and developed other methods which 

are considerably simpler and give solutions close to the exact ones. 

The building codes, based on this line of thinking, make use of one or two 

design procedures to determine the strength of beam-columns. To provide safe 

combinations of the applied loads they use either charts (or tables) or interaction 

formulae. These formulae relate the ratios P/Pu and M/Mu where Ρ and M are the 

axial load and bending moment at failure respectively, whereas Pu and Mu are 

appropriate measures of the strength of the member under respectively axial load or 

bending moment alone. 

If the design aims to attaining the first yield, then Pu and Mu should be taken 

as the first yield conditions. For an ultimate load design, Pu is taken as the ultimate 

axial strength of the column, Ρ = a A the corresponding axial strength suggested 
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by codes, and Mu is taken as the full plastic moment Mp. 

In a slender beam-column under a loading system where Ρ is the axial load 

and M1 is the maximum primary bending moment (obtaining from a linear analysis 

without the effect of axial load), the theoretical upper limit of thrust Ρ will be the 

elastic critical load PE. An axially loaded column, failing at load level Pu, will lead 

to a design criterion P/P <. 1. On the other hand, in the absence of axial load, the 

strength of the beam-column will be influenced only by the primary bending 

moment, thus yielding the design criterion Ml/Mu <. 1. In a combined action of 

axial load and bending moment on the beam-column, an interaction formula of the 

form 

/ 
( Ρ M ι\ 

KP» M»J 

ί 1 (2.3) 

will govern the strength of the beam-column at failure. Formulae based on Eq. (2.3) 

seem to provide exact results when the extreme cases are considered, i.e. either axial 

load or bending moment acting alone. For combined loading cases they lose some 

of their accuracy due to certain simplifying approximations. These approximations 

have been made on the basis of curve fitting either from available test results or 

exact numerical solutions. For predicting the strength of a beam-column under 

general loading a linear interaction of P/Pu and M l/Mu was primitively introduced 

in the form 

p M ι n±\ 
— + <> 1 (2.4) 
Ρ M 

This equation was proved to be inadequate for the design of steel or aluminium 

beam-columns due to the effects of axial load in producing additional bending 

moments. Better results would therefore be obtained if M ' were replaced by M, i.e. 
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where M is the value of bending moment, which, due to the combined effect of axial 

load and further deformation of the member is difficult to determine. The attention 

was therefore directed to simplify the procedure to obtaining M for some particular 

loading patterns. 

The maximum bending moment occurring at mid-height of a beam-column 

under axial load Ρ and equal opposite end moments M0 is approximated as 

M = M, 
e ρ \ 

Ρ -Ρ 
(2.6) 

In this equation the term in parentheses may be considered as an amplification factor 

since it amplifies the primary moment M0 to give the final one (primary + 

secondary). The equation also applies to eccentrically loaded columns under same 

eccentricities e, where the term M0 is replaced by Pe. Although the maximum 

bending moment in Eq. (2.6) is less than the exact one25 this equation is currently 

being used by most codes of practice as the basis for the interaction formula for the 

strength of beam-columns. Substitution of M from Eq. (2.6) into (2.5) results in 

Af. 
ύ 1 

M. 
(2.7) 

E) 

In the case of non equal end moments M0 and βΜ0, where -1 ^ β <. 1, the 

greater end moment M0 is recommended to be used, although it may lead to over-

conservative results, particularly in the case of double curvature. 

An extensive, approximate mathematical study of this problem started in 1947 

by Massonnet, who, in cooperation with Campus26 suggested that Eq. (2.7) should 

take the form 

Ρ c

mMn — + 2L_£_ £ 1 
Ρ ' ( Ό\ 

M. 1 
Ρ, 

(2.8) 
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where Cm = ν 0.3(1 + β2) + 0.4 β . Later on, having realized the non-conservative 

nature of Eq. (2.8), he proposed the relationship 

ρ Κ 
+ — ^ 1 M<Mn (2.9) 

Py 1.18Mp ° p 

based on a mechanism consideration at the end of the member. A lot of work has 

been undertaken by many other investigators to provide a proper moment factor, Cm, 

to provide better results. 

When a simply supported beam-column is under a transverse loading pattern, 

the use of Cm factor becomes meaningless. The total moment along the beam-column 

is 

M = Ml+Pw < 2 · 1 0 ) 

where Ml is the primary moment due to transverse loading before the axial load is 

applied and w is the total lateral deflection. In order to ensure a safe design, it is 

necessary to find the maximum moment by solving the differential equation of the 

beam-column with the proper boundary conditions at the ends. However, for design 

purposes it is more convenient to use a simplified approach. On the assumption that 

the maximum moment occurs at or near the mid-span, use of Eq. (1.1) in Eq. (2.10) 

yields for bending moment 

M = Ml + P 
( Ρ \ 

Ρ ~P 
w 

I (2.11) 

where w l is the primary deflection produced by the primary moment alone. Since wl 

is a linear function of Μl, this can be written 
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M = M1 

< Ρ \ 

ΡΕ 

1-ϋ. 
(2.12) 

where ψ = 
wlP, 

M1 
1 . This allows a more generalised interaction formula to be 

written 

CM1 

M. 1-
P\ 

£ 1 
(2.13) 

in which 

Cm = 1 + Ψ- = 1 + 
^ Ml 

- 1 (2.14) 

Several investigators compared the interaction formula of Eq. (2.8) with 

available experimental and numerical results for both eccentrically and laterally 

loaded beam-columns and generally they observed a good agreement. 

Ballio and Campanini27 in 1981, used a computer program to examine 1000 

cases simulated the behaviour of beam-columns hinged at their ends, with different 

slenderness ratios, section properties or loading patterns. For all cases a sinusoidal 

geometric imperfection of L/1000 was considered. The results were checked against 

the interaction formula, which, was found to be conservative in some cases and non-

conservative in some others. 

2.5 Design Formula for Ultimate Capacity 

For the analysis and design of beam-columns most of the design codes make 

use of interaction formulae. In the case where equal end moments are applied on a 
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beam-column, the ECCS28 recommendations introduce the equation 

P Mo + Pe* 
+ 

Pv Mil-PIP F) 
s 1 (2.15) 

where e * is a notional eccentricity which accounts for all imperfections and M0 

is a linear bending moment. 

The value of e* is obtained from Eq. (2.15) in the absence of bending 

moment M where Ρ is the axial compression capacity of the column obtained from 

appropriate ECCS column design curves. The expression for e * is 

e* = —e 
'Ρ \ 

1-
p

E ) 

(2.16) 

Nethercot and Taylor29 in 1977, simplified Eq. (2.15), which was then included in 

the revised BS 449. The new interactive formula, having the form 

ρ ρ Mn Mn 
J l + 0 . 5 · — ·—£ + —£ <; 1 
Pn Pn Mn Mn 

P P P P 

(2.17) 

is today being used in BS 595030. 

In the case of unequal end moments, the codes use the concept of the 

equivalent uniform moment factor, where, M0 in Eqs. (2.7), (2.15) and (2.17) is 

replaced by Af = C M , in which M is the maximum end moment. In BS 5950 
A J cq m ο ο 

the expression for Cm is 

Cm = 0.57 + 0.33β + Ο.ΙΟβ2 ^ 0.43 (2-18) 

The concept of equivalent uniform moment factor is also employed for the 

cases of laterally loaded beam-columns. 
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The European recommendations assume 

Meq = I Meql + Kl 1 ( 2 · 1 9 ) 

where M l is the equivalent moment due to end moments in the absence of 

transverse forces whereas Mol is the largest bending moment due to transverse 

loading only. Mol can be determined if the column is considered as simply 

supported without end moments. If Mol has an opposite sign of the maximum end 

moment, or the absolute value of Mol is less than twice the absolute value of this 

end moment, the ECCS assumes Mol = 0. 

Comparisons between the interaction formulae show some minor 

discrepancies between them. This might be due to the fact that, depending on the 

geometry of the member and its loading conditions, there is always a minor degree 

of inaccuracy, ascribed to various reasons, some of which are described below. 

(a) Case of equal end moments : For very small slenderness ratios, λ, 

where there is no problem of elastic stability, the ECCS interaction formula becomes 

L· + ¥° = l (2.20) 
Py MP 

whereas the corresponding from BS 5950 is 

^ Ο , ΐ - ί ί ^ , Ι (2.21) 
P, P, MP

 M, 

In a non-dimensional plot of PIP versus M/M Eq. (2.20) represents a straight line, 

and Eq. (2.21) a concave curve; however, a numerical solution provides a convex 

curve. This means that both formulae underestimate the ultimate load as the 

slenderness decreases. The degree of conservatism depends on the cross section 

shape and can be more than 60%. Fig. 2-1 shows the solution obtained from Eq. 
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Figure 2-1 

(2.20) and (2.21) in comparison with a numerical solution31 obtained for the case 

of H section buckling about its weak axis. 

As the slenderness ratio λ increases, the elastic instability effects start to 

appear. Curves obtained numerically tend to gradually change form, from the 

concave (low λ) into convex (high λ), whereas Eqs. (2.7), (2.15) and (2.17) predict 

a concave behaviour. The degree of this change depends on the amplification factor 

PEf(PE-P), which converts the primary moments into total moments. Fig. 2-2 

shows the change of this factor in comparison with its theoretical form32, where, 

as the load increases, approaching the Euler load, its value becomes less 

conservative. Hence the degree of conservatism decreases when the slenderness 

increases. Even though the overall design may still be safe (except for high 

slenderness ratios), there is not a uniform degree of safety in every case of 

slenderness. 

(b) Case of unequal end moments : In this case the resulting equivalent 
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Figure 2-2 

uniform moment M = CmMo is independent of the applied axial load and 

consequently the interaction given by equations (2.7), (2.15) and (2.17), if Mo is 

replaced by Me , does not relate to that defined by equations (2.20) an (2.21). This 

event combined with the fact that Cm is always less than unity, implies that the use 

of interaction formulae for low axial load, even for high slenderness ratios, may not 

lead to safe results. 

A second limiting interaction relationship can be found on the basis that the 

plastic hinge will form at the end of the column with the highest bending moment. 

Therefore the following inequality must be satisfied, 

ο pc 
(2.22) 

where M is the plastic moment capacity of the column in the presence of axial 

load. The relation between M and axial load can be found by statics. 
pc J 
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Where the first interaction formula is used to predict the strength of a beam-

column, Cm often underestimates the bending moments. This, coupled with the non-

conservative nature of C , despite the conservative nature of Eqs. (2.20) and (2.21), 

may result in an unsafe design. 

(c) Case of transverse loading : In this case, with or without end moments 

BS 5950 assumes that in the relation Me = CmMo, M0 is the maximum value of 

the primary moments. No allowance is made for the shape of the primary moments 

diagram and Cm has been taken as unity. In the case of combined end moments, 

when the lateral load is relatively small the value of Cm should be approximated to 

the value obtained when the end moments act alone. But this is not usually the case. 

In the European recommendations this shortcoming is partially overcome by 

the use of Eq. (2.19). Again no reference is made for the shape of the primary 

moment diagram caused by transverse loading. 

2.5.1 Conclusion 

Several interaction formulae have been introduced in this section with the aim 

of achieving a fit for numerical results. The lack of crucial information on each set 

of numerical or test results, caused inaccurate results to be obtained when the 

formula is applied to an extended range of variables and parameters, having an 

influence on the load carrying capacity of beam-columns. 

The interaction Eq. (2.7) for example, formulated for an I-section column 

with two equal end moments bending about its major axis, was found to give overly 

conservative results for other loading patterns. It was also found that for a similar 

column bent about its minor axis, both overly conservative and in some cases non-

conservative results might be obtained33. Introducing C , a factor to cover the 

influence that the shape of bending moment has on the load capacity for columns 
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under unequal end moments, was found to give unsatisfactorily results. 

The approaches which rely on Cm, do not cover the problem of other 

situations, like those arising from a different type of loading pattern. One of the 

main parameters which influences the load carrying capacity of beams-columns is 

the loading pattern of the member. Different loading patterns generate different 

deformed shapes of the member. If on these shapes an initial unintentional geometric 

imperfection, either as out of plumbness or out of straightness is added, the action 

of an axial load causes higher values on the induced bending moments. The 

influence of this parameter can be adequately taken into account if the column is 

considered as having imperfections. This idea will be developed in this thesis. 

2.6 Historical Developments of Frame Buckling 

The discussion developed in the preceding sections concerned the behaviour 

of pinned columns which are under a general system of loading. In reality, however, 

columns rarely exist alone. They are usually components of frames connected with 

beams to build a monolithic construction. Due to the nature of connections an 

interaction is always developed between beams and columns. The simplest way to 

take account of the interaction between a column and the remainder of the rigid 

jointed multistorey frame where it is connected to is to consider the column as a 

beam-column which is restrained at both ends. The main differences which 

distinguish a pinned beam-column from a restrained one are the following: 

a) If a perfect elastic pinned beam-column can carry the Euler load, a similar 

restrained one is able to carry a higher load when sway is prevented and a higher 

or lower load if sway exists. In the sway case the load is a function of the stiffness 

of the surrounding frame. 

b) In a pinned beam-column any known end-moments and/or eccentricities 

remain the same while the axial load is increased. This is not the case, however in 

a similar restrained beam-column, where, these magnitudes change due to interaction 
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between the column and the remainder of the frame. 

A review of the past work in the area of frame buckling has been provided 

by Massonet34 and Johnston35. In designing of frames various procedures have 

been employed. Some of these procedures, where the frames have already been 

designed, involve a check for the instability limit load, whereas others are 

approaches where the design of the frame is modified to take into account any 

instability effects. More historical developments for these procedures can be found 

in the reference36. Here four of the main procedures which are now being used are 

summarized. 

2.6.1 The Effective-Length Design Procedure 

This procedure may be classified as a design method. When a frame is under 

a monotonically increasing loading at its joints, like in axially loaded struts, there 

will be no flexural deformation until the load level reaches a particular value, called 

the elastic critical load. For a perfect pinned column this is the Euler load 

PP = ^L (2.23) 
E L2 

In an effective-length design procedure the elastic critical load of a frame's column 

is compared with the Euler load of a similar pinned column. For this comparison the 

frame is modelled as a set of columns which are elastically restraint at their ends. 

On the assumption they remain elastic, their maximum load capacity is the elastic 

critical load. Eq. (2.23) may therefore be used to determine the critical load of the 

column in the frame by substituting the value of γΖ, for L, where γ is defined as 

the effective length factor. The value of γ is a function of the stiffness of the frame 

surrounding the column. When sway of the frame is completely prevented, this value 

varies between 0.5 (both ends fixed) and 1 (pinned ends). For sway frames the value 

of γ may extend from 1 to infinity. Many attempts have been made in the past to 
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evaluate γ by means of alignment charts. BS 5950 makes use of the effective length 

charts suggested by Wood37 in 1974. 

If the effective length factor γ has been calculated, the critical load of any 

restrained column can be obtained as the Euler load of a similar pinned column of 

length yL. 

In real structures columns are usually subjected to both axial loads and 

bending moments. The procedure in the effective length design requires the structure 

to be analysed under various combinations of loading using a linear analysis. Then 

the calculated axial load and end moments of each column are applied on a nominal 

pin-ended column of length yL. The interaction formulae given in Sections 2.4 and 

2.5 are used to derive a suitable column section. A shortcoming arising from this 

procedure (apart from what has already been mentioned), is that the effect of 

reduction of the column's stiffness has been neglected. 

In ECCS and BS 5950 this method is suggested for design of members under 

compression in non-sway frames. For sway frames BS 5950 suggests the same 

method, under the condition that the frame is taken to be under vertical loading and 

has been designed as a non-sway frame, so that the member stability should be 

checked. The ECCS accepts this method provided all the forces have been 

determined using a second order analysis. 

2.6.2 The Amplified Sway Method 

This method is a design method utilizing the isolated beam column approach. 

The forces and bending moments are calculated through a linear elastic analysis. In 

order to account for frame instability, the moments due to horizontal forces, which 

cause sway, are amplified by a factor. In BS 5950 this factor is given by 

λ /(λ - 1 ) , where Xcr is the elastic critical load factor, i.e. the ratio of the sway 

critical load to the axial load, and can be obtained by an approximate formula given 
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by Home3 8. After the calculation of the increased forces and moments for each 

column, the member can be designed through the same procedure as that of isolated 

columns. Since the effect of frame instability has been incorporated in the 

amplification factor, the effective length of the column is taken as the one which 

results through the effective length factor. Additionally this standard requires that the 

frame is also checked as a non-sway frame under the actual vertical loadings, 

according to a procedure described later in section 8.4. 

In AISC/LRFD39 the amplified sway factor is recommended as 

1 
(ΣΡ\ 

[ΣΗ 

Δ (2·2 4) 

L 

or alternatively 

1 
ΣΡ (2.25) 

ΣΡε 

where ΣΡ and ΣΗ is respectively the sum of axial loads and shear forces acting on 

the storey, Δ is the translational deflection of the storey due to horizontal forces 

taken from linear analysis, L is the storey height and ΣΡ€ is the sum of K2EI/(yL)2, 

in which γ is the effective length factor of each column. The maximum moment in 

a member, as a result of sway, may be calculated from the primary moment using 

either of the above amplified factors, where the effect of member instability is also 

incorporated. Moments due to a linear elastic analysis for a non-sway frame are 

amplified through a factor Cm/(1-P/Pc), where Cm is given from Eq. (2.14) and 

Pc as defined above. The two magnified moments are then summed together to give 

the total moment, M, which is used in an interaction formula. The ultimate strength 

interaction formulae are 



Chapter 2 - Beam-Column & Frame Buckling 3g 

Ρ SM , 
— + £ 1 , 
Ρη 9Μ„ 

Ρ Ρ 
Ρ Μ , 

+ <; 1 , 

2Ρ„ Μη 
Ρ Ρ 

ρ 
— ^ 0.2 
ΡΡ 

ρ 
— < 0.2 
ΡΡ 

(2.26) 

where Ρ is the compressive axial strength of the column proposed by design code 

with length γΖ, obtained from effective length chart. 

2.6.3 The Merchant-Rankine-Wood Formula 

Fig. 2-3 shows the limiting stress for a pin-ended steel strut of mild steel 

having a nominal yield stress 250 N/ram2. The heavy line of this figure implies that 

slender struts buckle elastically at stresses defined by BC whereas stocky struts 

collapse by yielding. Tests on real struts have shown that the ultimate stress lies 

somehow below the composite curve DBC in the region of B. A rough estimate of 

the ultimate stress may be obtained from the interaction formula 

- = — + — (2.27) 
σ °E °y 

This equation provides a transition curve between the two extreme cases. In stocky 

struts σΕ is large and σ approaches σ . In slender struts σΕ is small and l/σ can be 

neglected in comparison with 1/σΕ, leaving σ = σΕ. 

Eq. (2.27) is known as the Rankine40 formula and is represented in Fig. 2-3 

by the broken line DC. 

Merchant41 in 1954, argued that instead of its component parts, the whole 

structure could be designed in a similar way to that of isolated columns. He 

suggested that the Euler load in Rankine's formula could be replaced by the elastic 

critical load of the structure and respectively the squash load by the rigid-plastic 

collapse load. The resulting modified formula for the design of a multi-story frame 
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where λ/ is the failure load factor of an elastic-plastic structure, λρ is the idealized 

rigid-plastic collapse load factor and Xc is the elastic critical load factor. Home4 2 

compared the Merchant-Rankine load with the results obtained from a series of tests 

on single bay model frames of 3, 5 and 7 stories, where he found that the formula 

provides a lower bound to the test results. For the purpose of avoiding too 

conservative results, Wood37 modified the formula so that 

Κ 
0.9 + -Ζ-

λ . 
er 

for 4 ζ -Ζ- ύ 10 
(2.29) 
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He suggested that for λεΓ/λ ζ 10, failure should be given by λ, = λ and also for 

Xcr/X < 4 an elastic-plastic second order analysis should be used. 

The Merchant-Rankine-Wood formula is an empirical approach in which the 

effects of imperfections and different type of loading patterns are inadequately taken 

into account. Although this approach provides lower bound solutions for certain 

structures with particular imperfections, the experimental results depicted in Fig. 11 

in reference 36 are quite scattered and considerably different from their theoretical 

prediction. 

2.6.4 Second Order Elasto-Plastic Analysis 

Unlike a first-order analysis in which the equilibrium relationships are written 

with respect to the original (undeformed) geometry, in a second order elasto-plastic 

analysis the equilibrium equations are written on the basis of the deformed geometry 

of the structure. This often entails an iterative type of procedure to obtain solutions. 

This is due to the fact that, during the formulation of the equilibrium relationships, 

the deformed geometry of the structure is not known. The analysis, thus, proceeds 

in a step-by-step incremental manner. This can be a highly non-linear situation and 

a fairly sophisticated computer program needs to be used to tackle the problem. 

Various approaches have been developed by many investigators described in 

reference 22. 

This procedure might be useful for those structures whose member sizes are 

known in advance, and the objective is to check the load carrying capacity of the 

structure. In most cases, however, designers need to analyse and design structures 

whose member sizes are yet to be determined. In these cases, the method requires 

a number of trial steps to be implemented, where, the member sizes are revised after 

each step before the most appropriate set of sizes can be selected. This often 

requires a substantial amount of computational effort. 
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2.6.5 Conclusions 

In this section various methods have been described for the analysis and 

design of rigid-jointed frames. Two of them, the Merchant-Rankine-Wood formula 

and the second order elasto-plastic analysis are considered as analysis approaches 

and can be used for frames whose member sizes are known in advance. Use of these 

methods for structures with unknown member sizes is a very difficult trial and error 

problem, and therefore time consuming. More appropriate methods in these cases are 

those which are classified as a design procedure. 

In the effective-length method the structural members are inaccurately 

modelled with pin-ended beam-columns, where any end moments are calculated 

from a linear analysis in the whole structure. Therefore the loading conditions of a 

real structure are usually violated and consequently this modelling cannot effectively 

represent its behaviour. Apart from this shortcoming both the effective-length 

method and the amplified sway method use for design purposes the interaction 

formulae discussed in sections 2.4 and 2.5, the deficiencies of which have been 

discussed in Subsection 2.5.1. A brief summary of these deficiencies may be 

a) For isolated beam-columns: 

• vagueness in relating loading imperfections to the particular load, 

i.e. use of effective moment for unequal end moments; 

• similar problems for lateral loading, i.e. the use of equivalent end 

moments; 

• possible inadequacy of yield/failure criterion. 

b) For columns in frames with no sidesway: 

• all of the above, but in addition 

• lack of clear definition of buckling mode and hence appropriate 

modal imperfections (both loading and geometric). 



Chapter 3 

Idealized Frame Models 

3.1 The Concept of Buckling in Idealized Frame Models 

In Chapter 2 a number of historical developments on beam-columns and 

frame buckling was discussed and various interaction formulae were presented. In 

this Chapter the buckling response on several possible idealized models, restricted 

or not against sidesway, will be examined. Consider the two structures in Fig. 3-1; 

structure (a) is a braced frame whereas in frame (b) there is a possibility of 

sidesway. Both structures have initially geometrically perfect members, which are 

mm 

(a) (b) 

Figure 3-1 

subjected to a set of point loads Pt at their joints. If the members remain elastic as 

loads are increased, there will be no flexural deformation until a particular level of 

loading is achieved. This load level is the so called 'elastic critical load', under 

which a bifurcation of equilibrium is possible. The buckling shape of the frames is 

shown by a thin line in figure 3-1. 
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(b) Linear elastic 
analysis 

- J 

Figure 3-2 

Fig. 3-2 demonstrates the lateral displacements w caused by the 

monotonically increased loads Pt. The mathematical solution of this model gives 

zero displacement up to the critical load P. (point A). At this level the displacement 
c 

becomes indeterminate following the path AB. 

If the displacement at the bifurcation point A is prevented, the frame may 

sustain theoretically higher loads causing the curve following path AC. This results 

in another bifurcation of equilibrium at a higher load. Mathematically an infinite 

number of bifurcation points (elastic critical loads) may exist, giving each time a 

different buckled shape of the structure, called 'elastic critical mode' shape. 

Depending on the bracing or not of the structure these shapes may be 
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different; in the first case they do not present any sway (horizontal displacement 

between the top and the bottom of the column) whilst in the second case, depending 

on the frame geometry, they present a sway mode at every pair of consecutive 

buckling modes. 

Q = 

Figure 3-3 

Consider now the structure of fig. 3-3 subjected to loads Q„ monotonically 

increased and proportional to loads P{. This causes the internal axial loads of 

columns to be also proportional to Pt. Such assumption is assumed to be valid in 

multistorey frames, where the important frame instability effects are due to the axial 

loads in the columns. 

The load displacement curve for this structure would be as shown by curve 

(c) of Fig. 3-2 provided the material remained elastic at all locations. Here no 

bifurcation occurs and the frame will start to deform from the onset of loading. 

Curve (c) becomes asymptotic to curve (a) corresponding to the elastic critical load. 

The analysis followed to obtain curve (c) is a non-linear elastic analysis. 

The actual state of loading of Fig. 3-3 may be thought of as the superposition 

of two loading cases. The one in Fig. 3-4a, consists of only the internal axial loads 

in the columns, which, from the elastic critical analysis point of view, reduces to that 
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of Fig. 3-1; the other in Fig. 3-4b, consists of the actual state of loading, plus a 

locally self-equilibrating form of loading condition, such that no internal axial load 

is imposed on the columns. Superposition of the loads of Fig. 3-4(b) onto those of 

Fig. 3-4(a) will result in the actual case of Fig. 3-3. 

For the load of Fig. 3-4(b) there will be no elastic critical load and the load-

displacement relationship will be linear, shown by line (b) in Fig. 3-2. The analysis 

employed for this case is a linear elastic analysis. 

Between curves (b) and (c) there is a difference in displacements at a given 

load level, which becomes larger as the load increases. This is due to the instability 

effects. In fact, in the case of fig. 3-4b, a state of pure bending is induced in the 

columns, which causes lateral deflections. These deflections are linear, and are 

intimately related to the linear bending moments in the absence of axial load. If the 

loading type of fig. 3-4a is acting in conjunction with the initial linear deflection of 

type 3-4b, it produces extra bending moment and, as a result, additional 

displacements. The situation is similar to that of a simply supported column which 

is originally bent. 

The loading conditions which produce bending moments in the columns of 
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a frame can thus be thought of as an other kind of imperfections. 

The above structures have been considered as perfectly elastic, without any 

effect of plasticity on their failure load. Taking plasticity into account, let us first 

assume that the structure of fig. 3-4b has a rigid plastic material. In this case a 

bifurcation of equilibrium takes place when the loads reach a certain value which 

may be less or greater than the elastic critical load. At this level of load enough 

plastic hinges form simultaneously and the structure becomes a mechanism, where 

no further increase of loading is possible.1^ In the absence of axial load in the columns 

the load-displacement relation of fig. 3-2 is the horizontal line (d). 

If the same rigid plastic material is considered for the structure as loaded in 

Fig. 3-3, the load-deflection curve will through a non-linear rigid-plastic analysis, 

be given by curve (e). 

An idealized condition which is closer to the real behaviour of the structure 

is taken by considering that its material, under the type loading of Fig. 3-3, is 

elastic-plastic. The first part of the load-deflection curve is actually the first part of 

curve (c) until at a load level P , the structure will at some location have a stress 

that reaches the yield, initiating the increasing importance of plasticity. Further 

increase of load causes progressive plastic hinge formation and a resulting deflection 

which is greater than that occurring if the structure had behaved elastically. This 

load level is considered to be a close estimate to the buckling collapse load Pb, and 

the material has reached the last stage of its elastic-plastic behaviour which has 

already started since the initiation of yielding. After the buckling collapse load the 

curve (f) approaches asymptotically the non-linear rigid plastic curve (c). The aim 

of the non-linear elastic-plastic analysis is to estimate the buckling load, Ph, 

corresponding to the peak point of curve (f) in the load deformation curve of Fig. 

3-2. 
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3.2 Idealized Non-sway Buckling Model 

The design procedure outlined in chapter 2 assumes the structure to remain 

effectively elastic up to the point of failure. If the design criterion is the achievement 

of first yield in a structure (permissible stress design), it will be considered that all 

members of the structure have been design to reach first yield at the same load level; 

even if this criterion is the achievement of collapse (limit state design), it is still 

assumed that the structure has been designed to remain elastic up to this load, when 

plastic hinges will be formed in all colurnns simultaneously, whereas the beams still 

remain elastic. The first yield condition provides a lower bound solution whereas the 

latter criterion furnishes an upper bound solution for predicting the ultimate load of 

the structure. 

The simplest way to isolate a column from the remainder of a non-sway 

structure such as Fig. 3-3, but take into account the interaction between them, is to 

consider a column as elastically restrained by rotational springs at both ends. 

In Fig. 3-5 the free body diagram of the column is shown. The axial load Ρ 

and the bending moments mA and ml

B are due to the action of the frame sustaining 

the applied loads and are obtained through a linear analysis (where the secondary 

effects of axial load are neglected). Local loads qp and q" which are proportional and 

non-proportional to the axial load might also act laterally to the column. In order to 

take into account the instability effects as well as the additional moment due to 

interaction of axial load and initial linear displacement, two rotational springs at the 

ends of the column are considered to have stiffnesses CA and CB; mA and mB are 

additional end moments which are produced when the axial load is applied and the 

member begins to deform. 

Two other idealized models are shown in Fig. 3-6. The member in Fig. 3-6a 

is under axial load only, while there is no axial load in the member of Fig. 3-6b. In 

this way information about elastic critical loads and mode shapes can be obtained 

from case (a) while the loading'imperfections may be determined from the loading 

condition of the case (b). 
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Figure 3-5 

Β 

(a) ( b ) 

Figure 3-6 

The load-displacement curves for these three models would be similar in form 

to those that have been drawn for the whole structure in Fig. 3-2. In this Figure, Ρ 

is the axial load of the single column of each model, while Ph is the buckling load 

of the appropriate beam-column. The intersection between curves (c) and (e), 

denoted by a load level corresponding to Ρβ, is obtained under the assumption that 
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the column remains elastic until the first plastic hinge occurs. This provides an upper 

bound solution for Ph; a lower bound solution for Ph is the level Pfy, at which the 

column starts to yield. 

It is the estimation of these upper and lower bounds to the collapse load that 

will form the basis of design analysis developed in this thesis. For this, it is evident 

that the non-linear elastic response of curve (c) plays the vital role. 

In order to obtain the non-linear elastic response of curve (c) in Fig. 3-2, the 

linear elastic response, given by curve (b) in Fig. 3-2, is a necessary first step along 

with the prediction of the elastic critical loads and the corresponding critical mode 

shapes, indicated by curve (a) in Fig. 3-2. 

3.3 Linear Bending Analysis 

When a structure is under a known system of loadings and the members are 

required to be determined, an estimate of member sizes has to be made in order to 

find the internal forces in each section. The size of each member may then be 

revised before the most appropriate set of member section sizes can be selected. So 

a number of trials may be made until the structure is designed. This procedure 

applying to both linear and non-linear elastic analysis, demands a substantial time 

of computer. Specially for the non-linear elastic analysis, it is not easy to perform 

a desk method, since the Eulerian differential equation, based on the deformed 

structure, has to be up-to-dated for each incremental displacement. 

In the linear bending analysis, independently of the effects of axial loads on 

the rigidity of the members, the relationship between moment and curvature for each 

member is linear. 

A most effective method of a linear analysis was the moment distribution 

method, introduced by Hardy Cross, in which the end moments in each member of 

a structure can be calculated 'by hand. The development of matrix methods in 

structural engineering combined with the availability of fast computers, allows today 
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an exact linear analysis to be performed in a fairly routine way. The procedure is 

based on the fact that the relationship between loads and its displacements of a 

structure is linear and can be written in a general matrix form as 

[KE]{w] = {F} (3.1) 

where [KE] is the flexural stiffness matrix, {w} is a column matrix of 

displacements and {F} is a column matrix of forces. Solving this equation for the 

unknown displacements enable moments and internal forces to be obtained. 

The real values, however, for the internal forces of a beam-column may be 

very different from those predicted by a linear analysis. This is because in the 

calculation of bending moments, the additional deflections and hence the additional 

bending moments due to interaction between axial load and displacements, are 

neglected. However, a safe and economical design has always to take these moments 

into account because they provide the basis for the initial imperfections. 

3.4 Elastic Critical Analysis of Columns without Sway 

Consider the elastic perfect column of length L having rotational springs at 

both ends and subject to an axial load Ρ as shown in Fig. 3-6a. Being a member of 

a rigid-jointed frame with no imperfection, column AB will not have any lateral 

deformation before the load reaches the elastic critical load Pc. At this stage a 

bifurcation of equilibrium takes place and a small lateral load will produce a bent 

shape that does not disappear when the lateral load is removed. The deformation of 

the column will be resisted by the two rotational springs, which produce the 

moments mA and mB at the ends, as indicated in Fig. 3-7. 

Since the column does not sustain any lateral loads along its length, the 

differential equation for its deflected form is 

EIwiv(x)+Pw"(x) = 0 <3·2) 
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where w'v(x) and w" are the fourth and second derivatives of the displacement w(x). 

This equation is a homogeneous linear differential equation of the fourth order and 

is valid for any type of end condition. Its general solution involving four arbitrary 

constants takes the form 

w(x) = A^sinÇcx) + A2cos(kx) + A3— + A4 (3.3) 

where constants A]5 A2, A3 and A4 are determined from the end boundary conditions, 

and k is given by '• 

k -
Ν EI 

(3.4) 

Figure 3-7 

For the determination of constants the conditions of restraints at both ends of 

the member will be considered. At both ends the displacement is zero at the 

supports, so that 

w(0) = w(L) - 0 (3.5) 
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Two further conditions relating the resistant moment from the spring 

stiffnesses (CA, CB) to the rotations (θ^, ΘΒ) are given as 

mA = C A 

mB = CBdB 

or 

EIw"(L) = CAw'(L) 

Elw"{0) = - CBw'(0) 

(3.6) 

where 

dw 

dx 
= Θ, 

x = L 

dw 

dx 
ΘΓ 

x = 0 

(3.7) 

Combining equation (3.3) with the relevant four end conditions, a set of four 

linear, homogeneous equations in the constants Al5 A2, A3, and A4 are obtained. For 

arbitrary values of k, and hence P, these equations are satisfied only when A] to A4 

are zero, showing that the displacement w is zero and the column remains straight. 

In order to have a deflecting configuration of equilibrium, that is non-trivial 

solutions of this set of equations, the determinant Δ (A;) of the coefficient matrix has 

to be equal to zero. The condition A(k) = 0 furnishes an equation for the parameter 

k, which is the only unknown in this equation. Actually, this equation, being 

transcendental in k, gives an infinite number of roots kci (i = 1,2,..) referred to as the 

characteristic values of the parameter k, which define, through Eq. (3.4), an infinite 

number of critical loads Pci = EIkci. The four constants Au, A2i, A3i and44. 

associated with the characteristic value kci of the ith critical load can be obtained 

by introducing the value kci into the four boundary condition equations. Since the 

determinant of the coefficients of these equations is zero, this leaves only three 

independent equations for four unknowns. Taking one of the unknowns, Au, as an 

arbitrary constant value and calculating the other in terms of this value, a set of 

ratios 
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A 2» 
l3i 

^ 3 i A - A - (3.8) 

allows the critical mode shape to be determined. Substituting these values into Eq. 

(3.3), the deflection function of the buckled column associated with k . is obtained 

as 

wXx) sm(kcix) +A2icos(kcix) +A3i- +A4i 
(3.9) 

1=1 

Figure 3-8 

This deflection function is indeterminate 

as to magnitude, (Au remains an arbitrary 

constant), but is definite as to shape, 

since the function in brackets, the so 

called characteristic function of thcith 

critical mode, φ(χ), is known. The 

elastic critical loads Pci are thus defined 

in terms of characteristic values of k . of 
CI 

an eigenvalue problem whose 

characteristic functions are the critical 

modes φ.(χ). The critical mode shapes of 

a beam-column with rotational restraints at its ends is shown in Fig. 3-8. 

The calculation of the elastic critical load of the column given in Fig. 3-7 is 

based on the condition A(k)-0. Assuming the rotational springs have linear 

characteristics, the former condition results in 

kL 
c 

tan(fcL) 

(KL)2

 1 kL 
c 

tan(fcL) 

(KL)2

 1 1 
kL 

c 
sin(kL) 

(3.10) 
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CAL CBL 
where r, , rR = 

A EI B EI 

If the values of CA and CB are known, the roots of Eq. (3.10) in terms of k . will 

9 

provide for this column, the elastic critical loads Pci = EIkci . 

The solution of this non-linear equation is usually realised through charts 

relating kc to rA and rB. For simplicity reasons, in most codes of practice, the stability 

of the restrained column is compared with the stability of a simply supported column 

of effective length Le=yL, in which γ is the so called effective length factor and can 

be calculated under the assumption that the elastic critical load of the restrained 

column, Pc, is equal to the Euler load, PE of this simply supported column, so that 

Ρ = f^L = Elk] = Ρ (3.11) 

yielding 

kcL= - . (3.12) 
γ 

Substituting (3.12) into (3.10) allows the effective length factor of a column with 

both ends rotationally restrained to be found in terms of rA and rB. In most codes of 

practice a set of effective length charts are often employed to give the effective 

lengths of columns with ends rotationally restrained. 

In the case of equal rotational restraint at both ends of the column, so that 

CA= CB = C, Eq. (3.10) is reduced to 

KL EI,, „2 

tan(fc L) LC 
^-(kJLY-l = ± 

kL 
1 sinŒL) 

(3.13) 

from which two forms of buckling configuration may occur: 
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a) The symmetric shape, coming from the positive right-hand-side, may 

easily be shown to yield 

tan 
kL 

c 

2 ) _ 
kcL 

2EI 

LC 
(3.14) 

which is a result already familiar from the 'Elastic Buckling of Columns and 

Frames', [Eq. (2-10) of Appendix C] and 

b) The antisymmetric shape from the negative right-hand-side, which, 

Δ Antisymmetric 

kcL/2 

Figure 3-9 

similarly gives the equation 

tan 
(rf 

2EI 
(kL\ 

11 + 
LC kcL 

(3.15) 
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again familiar, from the same theory [Eq. (2-11) in Appendix C]. 

LC 
Introducing the notation r = — , the solutions for the first three critical 

EI 

k L 
modes (0 - 3π ) of -^—, coming from equations (3.14) and (3.15) can be given for 

both shapes (symmetric and antisymmetric) in a graphical form for varying r, as 

shown in Fig. 3-9. 

3.5 Critical Mode Shapes of Non-sway Columns 

Harmann43 was the first to realise that the elastic buckled shape of an 

axially loaded, originally straight bar having any end conditions is a sine wave. 

Ayrton and Perry4 in their analysis had already assumed that the configuration of the 

geometric imperfection is a half sine wave, which is exactly the shape of the first 

critical mode of a simply supported column. 

W 

Figure 3-10 

In the buckled shape of the restrained column in Fig. 3-10 there are two 



Chapter 3 - Idealized Frame Models 55 

points of contraflexure, C and D. At these points there is no resistant against 

rotation, and the resultant forces and moments at each end of the column should pass 

through them. The free body diagram of the part CD holds two axial loads, p'c, at 

the ends and its behaviour is similar to that of a simply supported axially loaded 

column. The elastic critical load is thus the Euler load of a column with length Le, 

i.e. 

Ρί',^ψ- (3.16) 

The angle of CD with the vertical is infinitesimally small, so Pc is assumed 

to be equal to Pc In the above formula Le is the effective length of the column, 

which therefore has the meaning of the portion of the column that lies between two 

adjacent points of contraflexure in the column's deflected shape. 

If PF is the Euler load for the pinned column of length L, the elastic critical 

Ρ can be written in the form 
c 

Pc = 
iz2EI 

(yLf 

pE 

' γ 2 

(3.17) 

in terms of the effective length factor γ, whose mathematical value, is thus, 

γ = 
\ 

il (3.18) 
Pc 

The deflected shape of the column with respect to the (X,W) axes is 

W(X) = Λ sin 
KLel 

(3.19) 

This equation is valid not only for the portion CD of the column but also for its 
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entire length. 

3.6 Elastic Critical Analysis of Columns with Sway 

Figure 3-11 

A more general case for a perfectly straight column elastically restrained against 

rotation at both ends and against translation at the top is considered in Fig. 3-11. In 

this case, the rotational end restraints are again achieved by rotational springs with 

spring constants CA and CB while the top restraint against translation is accomplished 

by a translational spring with spring constant KA. From the buckling configuration, 

shown in the same figure, the differential equation for the deflection curve is 

EI^L = -M (3.20) 
dx2 

where 

- M = Ρ('δ - w) -KAb(L-x) - CAQA . (3.21) 

Substitution for M in (3.20) yields the governing differential equation 
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E / — + P w = KÀÒx + Ò(P-KAL)-CAd, , 
dx2 A A A A 

(3.22) 

which, for k -
\ 

— , has the general solution 
EI 

w - C1sinfcc + C,cosfcc + χ + δ 
1 Ζ ρ 

/ KÀL\ 
M 

CAd 
Λ "A (3.23) 

The boundary conditions require 

w(0) - 0 , w(L) = δ 

dw 

dx 
θ β , 

Λ = 0 

dw 

dx 
= ΘΑ 

x = L 

(3.24) 

where 

θ, 
PÒ-KAÒLCAQA (3.25) 

Applying the preceding conditions in (3.23) yields 

0 1 -
KAL 

Ρ 

c 
sin kL 

k 

ccoskL 

cos kL 

0 

-ksinkL 

5L 
P 

0 

P+KAL 

^B ^B 

^A 

Ρ 

_A 

Ρ 

-1 

θ, 

ο 

ο 

ο 

ο 

(3.26) 

In order to have a non-trivial deflected shape of equilibrium, the determinant of the 
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coefficients of the system must be equal to zero. Introducing the non-dimensional 

notation 

ΚΛ 
t = 

EI/L -
and r. = 

' EIjL 
(i=A,B) (3.27) 

the characteristic equation may be rewritten 

0 

sin kL 

kL 

kL coskL 

1 

cos kL 

0 

-kLsiakL 

1 

t 

(kLf 

t 

(kLf 

0 

(kLf + 

t 

(kLf 

t 

rB 

rA 

(kLf 

rA 

(kLf 

[A 

rB 

-1 

= ο , 
(3.28) 

which, after developing and rearranging, leads to the general solution for the case 

shown in Fig. 3-11, i.e. 

^i[(kL)UkLf(rArB+t)+rBt(rA-iyrj}^smkL-
(kL) [ rB 

-[(kL)\rA+rB)-(kLft(rA+rB)-2rArBt]
C^-2rAt\ = 0 . 

In this equation, by putting t = 0, we obtain the simplified condition 

(3.29) 

kL(rA +rR\ 
tankL = l A B)-

(kLf-rArB 

(3.30) 

which is the case of a column subjected to rotational restraints at both ends with 

uninhibited lateral sway. By setting rA = 0 in Eq. (3.29) we obtain the condition 
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(kL) 
( kL ^ 

1 tanfcL 
t = ν rA L (3.31) 

1 
JB+ kLj 

tan kL 

which is the case of a column subjected to a rotational restraint at one end and a 

translational restraint at the other. 

Gurfinkel and Robinson44 were the first to consider the analysis of the above 

case. In their theoretical approach, where the buckling behaviour of elastically 

restrained columns was taken into account, they reached up to Eq. (3.28). In the 

absence of substantial recommendations for an overall solution, a magnitude for the 

first critical load was provided through graphs, where, the value of kL could be 

obtained relating two of the given values rA, rB and t; this is because in their solution 

they considered a column subjected to one the following cases of restraints: 

1) a rotational at both ends with uninhibited lateral sway and 

2) a rotational at one end and a translational at the other end. 

Considering the general case where all three restraints are present, for known 

values of rA, rB and t, the transcendental Eq. (3.29) yields an infinite number of 

values of kL. The critical loads can then be determined by the equation 

Pc = (kcL)2ïl . (3.32) 
' ' L2 

A computer program in FORTRAN, the basic steps of which are given in the 

Appendix G, has been developed to calculate the roots (values kci L) of equation 

(3.29), leading thus in the calculation of the critical loads through Eq. (3.32). 

Also two separate programs in BASIC, based on the Newton-Raphson 

approximation, have been made to verify the values of kL derived from section 3.4, 

for both the symmetric and antisymmetric shape, as well as the values of kL for the 

special case of Eq. (3.29), when the translational stiffness is infinity. The excellent 

agreement shows that the braced case of section 3.4 can well be considered as a 
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special case of section 3.6. 

3.7 The Orthogonality Relations of Critical Modes 

Consider a column with pinned, fixed or free ends. These end conditions, 

which are the most frequent in a structure, result obviously in two boundary 

condition equations, as follows 

Pinned end w = & and w" = 0 

Fixed end w = 0 and w1 = 0 

Free end w11 = 0 and EIw'"'+Pw' = 0 

(3.33) 

The characteristic functions which arise from the governing differential equation of 

a single member having any combination of the above boundary conditions have 

fundamental properties of outstanding importance known as orthogonality relations. 

For the critical modes these relations are given by Bleich45 as 

fLU(x)$(x)dx = 0 (3-34) 

and 

fLEltf(x)1i'(x) = 0 (3.35) 

where χ is the distance along the member and (^(x), φ(χ) are two different 

characteristic functions associated respectively with the ith and j t h critical modes. 

The primes indicate differentiation with respect to χ while EI is the flexural rigidity 

- not necessarily uniform - along the member. 

For each critical mode a normalizing relation between the characteristic 

function φ(χ) and the corresponding elastic critical load Ρ . can be written as 
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fLEI^%)dx = Pj%\x)dx . (3.36) 
JO c v o 

The validity of the orthogonal relations for the characteristic functions of a 

plane elastic frame were verified by Ariaratnam46 and completed by Home47 for 

more general cases. For a plane elastic frame the orthogonality relations are similarly 

£ Ρ (%{x)^Xx)dx = 0 (3.37) 

Σ fLEI$"(àty(x)dx = 0 (3.38) 
M 

while the normalizing relation is 

£ \LEI^\x)dx = £ Pci[
LU\x)dx (3.39) 

M M 

where J^ denotes summation for all members, while Ρ and Pci are the axial and 
M 

the corresponding critical load of each member of the frame. The first relation (3.33) 

was found to be valid for any structure having a linear elastic behaviour at its 

supports whilst the second one (3.34) was found to be valid only for those structures 

that are pinned, fixed or free ended. 

It can be shown that the critical mode shapes φέ(χ) corresponding to all 

critical loads Pci (i=l,2,...) form a complete set of orthogonal functions. We may 

therefore expand any arbitrary deflected configuration w, satisfying the same 

geometric boundary conditions like the functions φ^χ), as an absolutely and 

uniformly convergent series of the form 

co 

w = Σ WMX) ( 3 , 4 0 ) 

where w. is an amplitude factor associated with the ith critical mode. 



Chapter 4 

The Non-linear Elastic Response 

Theoretical background 

4.1 Introduction \ 

In the preceding chapter an elastic critical analysis of idealised buckling 

models with and without sway has been discussed. This chapter will be focused on 

the general concept of imperfections, as the primary reason for a non-linear elastic 

response of a beam-column. 

When a structure is subjected to a system of forces, its members will in 

reality start to bend from the onset of loading. This is due to the inevitable 

imperfections which originate from either the initially out-of-straight form of 

members or the material and loading conditions of the structure. These imperfections 

are generally classified as geometric or loading imperfections. Structural 

imperfections due to cooling process of hot-rolled steel members or welding usually 

cause stresses to be locked into the structural members and are often a cause of 

geometric imperfections when the member is cut and locked in stresses are released. 

The loading imperfections may be divided into two categories; these are the 

proportional loading imperfections and the non-proportional loading imperfections, 

with the distinction depending on whether the loads producing the imperfection are 

proportional to or independent to the axial loads. 

When the effect of axial load on the stiffness of the structure is ignored, the 

load - displacement relationship in the structure is linear. The existence of 

imperfections, however, along with the axial loads, results in a non-linear 

relationship between load and displacement. The objective of this chapter is to relate 

the non-linear elastic response of the structure to its linear one through a simple and 
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general formula. 

4.2 Geometric Imperfections 

Consider the column in Fig. 4-1 as a component of a rigid frame with an 

initial deflection w °(x). Under the axial loads Ρ the column deflects even more. Letw(x) 

be the incremental displacement caused by the application of the axial load shown 

in the same figure. 

1 - ^ y W 1 

Figure 4-1 

If φέ(χ) (ί'=1,2,3,···) are the characteristic functions of the critical modes, the 

initial deflection can be expressed, in terms of the set of orthogonal deflections, in 

the form 

w °w =,Σ<Φ^) . (4.1) 

i=l 
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where w° is an unknown amplitude factor, termed as modal geometric imperfection. 

The total deflection of the column, \ν'(χ), produced when the axial load is applied, 

is given by the equation 

where w/ is the amplitude factor of the modal total displacement. The differential 

equation of equilibrium in this case takes the form 

where iv denotes the fourth differentiation of displacements with respect to x, 

measured from one end of the member. Substituting Eqs. 4.1 and 4.2 into 4.3 we 

obtain 

ΕΙΣ νν/φΓΟΟ - E / f w°tf(x) + P £ w>f(x) = 0 . (4-4) 
»=1 j=l j=l 

The critical mode shape φ^χ) corresponding to the critical load Pci will obviously 

satisfy the Eulerian differential equation 

Eltf(x) + PciU\x) = 0 . (4·5) 

Substitution of φ)ν(Λ;) from Eq. (4.5) into (4.4) gives 

Σpciw°^{x) - Σρα*!*ϊν>+ ρΣ " Χ ω = ° · ( 4 · 6 ) 

i = l (=1 i = l 

If Eq. (4.5) is multiplied by φ (*) and integrated over the whole length, 

through the orthogonality relations Ιφί φ̂  dx; = 0 ί *j between the critical modes, 
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it can be proved, that equation (4.6) is satisfied for each separate mode, i.e. for the 

ith term, 

w/ = ~ ~ < 0=1,2,3,...) . (4.7) 

In a similar way, the amplitude factor associated with the non-linear incremental 

deflection due to the axial load only, is given hy 

w, = —?— w* . (4.8) 
' Pa-Ρ 

Substituting w/ from Eq. (4.7) into (4.2) we obtain the total displacement with 

respect to the undeformed state of a geometrically imperfect beam-column 

"'« = Σ-^*'ΦΑ) · ( 4 · 9 ) 

<=ι Ρcr Ρ 

4.3 Loading Imperfections - Proportional Loading 

Fig. 4-2 shows a beam-column which is under a lateral load qp that is 

proportional to the axial load P. The column, is considered to be a member of a 

rigid-jointed frame which is also loaded proportionally. The frame, in resisting the 

applied load on the column, may result in two end moments m% and ιηζ that are 

proportional to the axial load P. They can be obtained through a linear analysis 

(where the effect of axial load is neglected). 

Application of axial load on the column results in additional moments and 

displacements. These additional moments, shown in the same figure as mA and mB, 

are due to the interaction between the axial load and the linear initial displacement. 
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The differential equation of equilibrium for the linear idealization case shown in Fig. 

4-2a prior to the application of axial load is 

El{wP(x))iv = qP(x) , (4.10) 

where wp(x) is the linear displacement of the column in a proportional loading 

system. This linear deflection, in terms of characteristic functions of critical modes, 

can be expressed as \ 

w'oo = £ w'w) , 
i=l 

(4.11) 

Ρ ρ 

>?Γ\ 

(a) 

Figure 4-2 

where wf is the amplitude of the ith critical mode in the linear displacement due 

to the same system of loading, termed as modal proportionate load imperfection. The 

differential equation for the case of complete loading, shown in Fig. 4-2b, becomes 

EIwt\x)+Pwt'(x) = qp(x) (4.12) 
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Putting qp(x) from Eq. (4.10) into (4.12) yields the equation 

El[wti\x)-wpi\x)] + Pwt\x) = 0 , ( 4 · 1 3 > 

which is similar to Eq. (4.3), with wp(x) substituted for w °(x). Following the same 

procedure as that of section 4.2 and recalling the orthogonality relations, theith 

modal amplitude factors, w/ and wj5 for a proportional loading system are 

w/ = — ? - w ? and w,. = -^—w,p (i = 1,2,3,...) (4.14) 

Making use of Eq. (3.40), with w. expressed through (4.14), the total 

displacement of a perfect column, under a proportional-loading imperfection system, 

in terms of its linear displacement, is 

wiw = Σ Λ * ) · (4,15) 

<=1 Pci~F 

4.4 Loading Imperfections - Non-proportional Loading 

The beam-column in this case is considered as a straight member of a rigid 

jointed frame but subjected to a lateral load which is not proportional to the axial 

load. The local beams connected to the column, may also have lateral loads that are 

independent from the axial load of the column. As a result, non-proportional end 

moments are induced on the column. During the loading procedure, it is assumed 

that the lateral loads on the local beams, together with any lateral load on the 

column, are applied prior to the application of the axial load. 

In Fig. 4-3a the linearly deflected shape of such a beam-column is shown, 

where end moments and displacements wn(x) are produced. The differential 
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equation of equilibrium for this linear case may be written as 

El{wn(x))iv = qn{x) . <4·1 6) 

When the axial load is applied, additional displacements along with extra end 

moments mA and mB are produced to give the deflected shape of total loading 

shown in Fig. 4-3b. Since the linear deflection w "(x) satisfies the same geometric 

boundary conditions as the characteristic functions φέ(χ), it can be considered as an 

absolute and uniformly convergent series of the form 

w 
n(x) = Σ wffyix) , 

i=l 

(4.17) 

m "ΓΛ 
Ά 

m 

w (χ) 

Β V _ y 

(a) 

χ m 
η ρ 

ìr^iw^Mrj-) 

Figure 4-3 

where w" is the amplitude of the ith critical mode representation of the linear 

displacement of the non-proportionally loaded system; this could be termed the 

modal non-proportionate load imperfection. The differential equation of equilibrium 
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for the complete loading case of Fig. 4-3b takes the form 

EIwt*v(x)+Pwt\x) = qn(x) . <4·1 8) 

Substituting qn(x) from Eq. (4.16) into (4.18) yields 

El[wt'\x)-wni\x)} + Pw"(x) = 0 . ( 4 - 1 9 ) 

A procedure similar to that described in section 4.2 will give the modal 

displacements w/ and w. for the ith term of the non-proportional loading system 

w/ = c-i-w" and wi = -^—wi

n (i = 1,2,3,...) (4.20) 

and the relationship between the total non-linear deflection w'(x) and the linear 

displacement wn(x) 

w ' w = Σ - ^ < Φ ΐ ω ( 4 · 2 1 ) 

4.5 General Case of Imperfections 

The distinct cases of a certain kind of imperfection which so far have been 

examined, may be combined with each other, to give a general case of all possible 

kinds of imperfections. Consider a beam-column which is not originally straight but 

possesses an initial deflection w °(x). The column is subjected to a loading systemçp 

that is proportional to the axial load, along with another, non-proportional system of 

loading q n. The load qn, acting first alone, produces on the column a deflection 

w"(x), accompanied by moments m"(x). Similarly the load qp, when applied, 

produces the corresponding amounts of moment mp(x) and deflection wp(x). 
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Retrieving the final forms for deflections of the preceding sections, we can 

express the above general case. Equations (4.7), (4.14) and (4.20) show that for a 

given axial load, the ith modal amplitude factor of the total deflection of the 

member, w/, is proportional to the ith modal amplitude factor of the corresponding 

displacement, obtained from the fundamental (linear) state, where the effect of axial 

load is ignored. Moreover the relation between w. and the axial force is not linear. 

The linearity of w- with respect to w°, wf and w", indicates that the 

principle of superposition, widely used when lateral loads act on a beam, can also 

be applied to the case of a beam-column which combines all the kinds of 

imperfections but in a somehow modified form. Any increase Δ VIA coming from a 

corresponding increase of the lateral load q n will be superimposed provided the 

same axial load acts on the member. The modal amplitude factor, wt , therefore, for 

the general case where there is a combination of imperfections on a beam-column, 

can be expressed by the form 

w- = — ( w° + wi

n) + wf , (4.22) 
' ρ _ ρ \ ' / ρ _ ρ 

ci r ci 

where 

ζ ί = w° + wj* + w" (4.23) 

is an amplitude factor of the total equivalent imperfection termed as modal 

equivalent imperfection. 

The corresponding total deflection, measured from the initially straight 

position of the column, is 
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*'(*> = Σ iA;W*> . ( 4 · 2 4 ) 

u pci-p 

while the non-linear incremental deflection due to the application of axial load is 

w(x) = w Xx) - w °(x) - w "(x) = J ] — ^ — C , Φ; (x) · ( 4 · 2 5 ) 
<=1 * d ^ 

The derivation of equations used in this chapter is independent of the 

geometry of the cross section of the members. This is what makes the Ayrton-Perry 

equation, initially discussed in section 1.1, have a general character. 

When the non-linear deflection function has been established, the other non­

linear components, such as rotation and bending moment can readily be obtained. 

The rotation, for instance, of the beam-column measured from the straight position 

of the member at each point, can be obtained by the first derivative of Eq. (4.24) 

with respect to χ 

β« = Σ-^ν*Φίω · (4,26) 

<=1 Ρ ci F 

The total bending moment at each section of the beam-column may be 

derived from the moment-curvature relation as 

M(x) = -El[wt\x)-w°\x)} , ( 4 - 2 7 ) 

where M(x) is the function of the total bending moment. It must be noted that any 

geometric distortions are supposed to be stress free. Substitution of w(x) from Eq. 

(4.25) into (4.27) and rearranging yields 

DO 

M(x) = -ΕΙ Σ — ^ - C, Φ!'(Λ) + m p (χ) + m " (χ) , (4-28) 
i=l PcCP 
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where 

mp(x) = -EIwp\x) 
(4.29) 

m\x) = ~EIwn"(x) 

are bending moments obtained from a linear analysis in a proportionate and non-

proportionate loading system respectively and φέ (χ) is the curvature of the ith 

critical mode function. The first of the three terms on the right hand side of Eq. 

(4.28) comprises the additional bending moment caused by the imperfections while 

the other two terms are linearly obtained moments, i.e. before the axial load is 

applied. 

The modal equivalent imperfection, ζ., is the only unknown in Eqs. (4.24), 

(4.25) and (4.28). The geometric imperfection, depending on the manufacturing 

procedure of the structural members and erection of the structure, is a random 

imperfection and therefore, has to be determined statistically. On the contrary, the 

loading imperfections of a structure, either proportionate to the axial load or non-

proportionate, may be calculated mathematically. 

4.6 Characteristic Function of Non-sway Critical Modes 

Consider a column as a component of an intermediate floor in a multi-storey 

and multi-span framed structure. If the end conditions of the member are similar, the 

critical mode shapes of the column will be symmetrical or asymmetrical with respect 

to an axis perpendicular to the mid-length of the column. This assumption of 

symmetry is not far from reality for internal members of rigid-jointed frames and 

controlled experimental testing, where identical end conditions are provided. 

Fig. 4-4 shows the first three critical mode shapes of a column with these 

characteristics. From the Harmann method, introduced in section 3.5, the buckling 

shape of each critical mode is a portion of a sine curve which exists between a 
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θΖ 

θ2 

(L-2L )/2 (L-3L >/2 

τ f~ Φζ(*) 

Figure 4-4 

Φ3(χ) 

certain number of points of contraflexures. This curve, in terms of a local co­

ordinate system, is given by the Eq. (3.19) 

W(X) = Asin(kX) = Asm 
I \ 

^X (4.30) 

where L is the effective length of the column. 

Using Eq. (3.9), the deflection function of the buckled column, being the 

general solution associated with the characteristic value kci = n/Lei of the ith critical 

mode in the same local coordinate system, is 

W: \{X) = A[sm(kciX) +Β cos (kciX) + CX + D] . (4.31) 

L-iL. 
Noting that X = χ - , Eq. (4.31) can be written in terms of the global 

system, (x,w), as 



Chapter 4 - The Non-linear Elastic Response. Theoretical Background 74 

w^x) = A- sin 
π 

x-
L-iLei 

Β cos π 

^ v 

L-iL 
x- + Cx + D 

(4.32) 

where 

D = D - C 
L-iL, 

(4.33) 

The terms in curly brackets of Eq. (4.32), according to what was referred in section 

3.4, constitute the characteristic function Φ É(x) of the ith critical mode 

Φ(.(χ) = sin 
πχ in _ π ΐ 

V L ~ + T ~ÎL 
\ ei ei ) 

+ Β cos 
( πχ in π L 

^L,i 2 2L .. 
\ ei ex j 

+ Cx + D . (4.34) 

The constants B, C and D can be calculated from the conditions 

ΦΛχ) = 0 at χ = 0 and χ = L , 

Φ; (Χ) - 0 at χ = 
L-iL^ 

(4.35) 

Application of the latter condition gives 

0 = 
( \ 2 

L 
V et; 

sin(0) - ß 
π 

VL«/ 

cos(0) or Β = 0 (4.36) 

The first condition now yields 

D = - sin 
/ ϊπ πΖ, (4.37) 

while from the second condition, after some trigonometric manipulations we obtain 
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sin 
uo 
y2L«, 

COS 
(i^ 

\LeiJ 

(4.38) 

The final form, therefore, of the characteristic function of the ith critical mode, may 

be written as 

Φ,ΟΟ = sin 
f πχ ϊ π πΖ-ì 2x . ( nL 

— + s in 
L . 2 2L . L 2L 

\ et et) \ et J 

COS 
^ ϊ π ' 

sin 
' ι π π L Λ 

2 1 
(4.39) 

et) 

If we differentiate Eq. (4.39) twice with respect to x, we obtain the curvature of the 

critical modes 

Φ"(Χ) = 
EI 

sin 
πχ m 

\ et 2^J 
(4.40) 

Making use of Eq. (4.28), Eq. (4.40) enables the bending moment at any section to 

be calculated while the column has buckled in its ith mode. 

4.7 Elastic-plastic Path of Imperfect columns 

The analysis developed in section 4.5 for the general case of imperfections 

allows a complete determination of the behaviour of imperfect columns with any 

arbitrary boundary conditions, if the total equivalent imperfection is given. 

An imperfect column starts to deflect from the onset of axial loading. This 

deflection, given through Eqs. (4.24) and (4.25), gives rise to bending moments, 

which in turn increase the curvature. The result is that, while the column might still 

be in the elastic region, its response to the applied load is non-linear. 

The maximum stress appears at the extreme fibres of the concave side of the 

cross section where the maximum bending moment occurs and is given by 



Chapter 4 - The Non-linear Elastic Response. Theoretical Background 76 

Ρ M 
ο - — + — . 

m A Ζ 

Substituting for M from Eq. (4.28), the maximum stress becomes 

(4.41) 

Ρ EI 
σ = — + — 

* A Ζ 

mp(x) mn(x) (4.42) 

If the end conditions of the member are similar, the critical mode shapes will 

be symmetric or antisymmetric with respect to an axis perpendicular to its mid-

length. In this case, the displacement 

w.G0 = ζΓφ,(χ) (4.43) 

of the ith mode is convenient to be expressed in terms of the corresponding 

normalized characteristic function 

Φ,ω = — , (4-44) 

Φ» 
max 

because then, in the expression of displacement, 

wJP) = ζ,φ, -φ/ζ) = ξ,.-φ,ω , (4.45) 
* * 'max 

the amplitude factor, ξ., of the ith mode, is the maximum deflection in that mode. 

If we further assume that the contribution of the first symmetric critical mode to the 

deflection and bending moment is very much greater than the contribution of 

subsequent modes (in an example of section B.4 in Appendix Β the corresponding 

contribution of the first sway mode is highlighted), then, in the absence of linear 

end-moments m p and m n, the expression for the bending moment occurring at any 

cross-section along the column, can be written as 
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Pr1P 
M(x) = - £ L — ξ ι α ι ( * ) 

(4.46) 

and hence stress as 

e W-H'iS ç ' a 'w 
cl 

(4.47) 

where 

a^x) 
cos 

nL Λ 2x\ 
1 

lLeA
 L)\ 

( KL\ 
1- cos , 2 L « J 

<M*) 
it2, 

CI 

(4.48) 

Eqs. (4.46 to (4.48) are obtained by combining relations (4.39), (4.40) and (4.43). 

Ρ 
y 

Ρ 
fh 

Ρ 
fy 

1st plastic hinge 

Collapse mechanism 

w/wl 

Figure 4-5 
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As the load is increased, the stress in the extreme fibres of the cross section 

will eventually reach the yield level. The load which causes the initiation of yielding 

is termed as first yield load, Pfy and is shown as point Β in Fig. 4-5. The first yield 

load is a lower bound to the collapse load and constitutes a failure criterion chosen 

by Ayrton and Perry. 

As the axial load is increased further, plastic yielding spreads over the section 

area and the column deviates from its elastic non-linear path, following a new path 

BDE. This is due to the higher rate of increase of column's local curvature after the 

inception of first yielding. The elastic-plastic portion BD of the curve is very 

difficult to define. To overcome this difficulty the column is assumed to follow its 

elastic path. The point of intersection, G, with the plastic collapse curve, is then 

taken as a close estimate of the upper bound to the collapse load. The real buckling 

load Pb corresponds to point D and lies somewhere close to the level of point G. 

4.8 Amplitude Factors 

The non-linear elastic response of a structure, as discussed in the present 

Chapter, was found to be related to its linear one. This relationship, concerning 

displacements and bending moments for a general case of loading, is expressed by 

Eqs. (4.24) and (4.28). From the above equations it can be seen that both total 

displacement, w(x) and moment, M(x), embrace two parts. The first one is a non­

linear function of the axial load and expresses the load-displacement interaction; the 

second one is obtained from a linear idealization and is independent of or 

proportionate to the axial load. The linear displacements, usually called primary 

deflections, may be the result of geometric and/or proportional and/or non-

proportional loading imperfections. 

The primary deflections are generally termed as imperfections and they 

compose the main reason for the existence of the non-linear part in both previous 

equations. The objective of this section is to calculate and simplify the non-linear 
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part of both the displacements and the bending moments. For this purpose, the 

characteristic function of critical modes φ^χ) was calculated in Section 4.6. 

The primary deflections can be expressed in terms of the characteristic 

functions of critical modes as 

\ 

00 

wP(x) = Y^wffyix) (4·49) 
i=l 

00 

w"(x) = Σ wt\(x) 

where w°(x) is the initial deflection, wp(x) is the linear displacement as a result of 

proportional loading and w n(x) is the linear deflection due to the non-proportional 

loading. Relevant to these displacements are the amplitude factors w°, wf, w? for 

each critical mode. 

Each term of Eqs. (4.49) is a part of the related primary deflection associated 

with the specified critical mode. If this specific part is multiplied by an amplification 

factor of P/(Pci-P), then the non-linear portion of this part is generated. For each 

kind of displacement, the summation of these linear parts along with their non-linear 

portions for each mode, form, according to Eq. (4.24), the total displacement of the 

member. 

Since the elastic critical loads of lower modes are considerably lower than 

those of higher modes, the amplification factors for the lower modes are much 

greater than those of higher modes. Consequently, the contribution of lower critical 

modes to the non-linear part of the displacement is most important, even if only the 

first symmetric and antisymmetric critical modes are taken into account. 

Apart from displacements, these arguments can be applied to the bending 
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moments. The non-linear part of bending moment in Eq. (4.28) is considered to be 

generated if each linear-bending-moment-term, is multiplied by the amplification 

factor, P/(Pci-P) associated with the ith critical mode. Thus it can be concluded 

that the most vital portion of bending moments is associated with the first symmetric 

and antisymmetric critical modes. Consequently, little accuracy will be lost if we 

take the contribution of only the first two critical modes, to the development of the 

non-linear moments. \ 

To determinate the non-linear contributions to deflections or bending 

moments due to the first symmetric and antisymmetric critical modes, the 

corresponding amplitude factors, need to be determined. Among the three amplitude 

factors of Eq. (4.49), w° is associated with geometric imperfection, which is 

random. Therefore it cannot be evaluated theoretically. Since the other two 

amplitude factors are dependent on the loading condition of the member they can 

be calculated mathematically. 

The procedure that follows in determining the amplitude factors of the 

loading imperfections is unified for both loading systems, proportional and non-

proportional. This is because the amplitude factors are dependent on the pattern of 

loading and not on the system of loading (proportional or non-proportional). As a 

matter of fact, each system of loading has exactly the same contribution in forming 

the total deflection or bending moment, according to Eqs. (4.24) and (4.28). So we 

can interchange the two systems by replacing the superscripts ρ and η between each 

other. 

Every pattern of loading can be considered as the result of superimposing a 

symmetrical and antisymmetrical loading pattern. In sections where the magnitude 

of deflection associated with symmetric critical modes becomes crucial, the 

contribution of antisymmetric critical modes becomes lower and vice versa. 

Therefore, the calculation of amplitude factors comprises only two cases of loading 

patterns, symmetric and antisymmetric. 
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4.9 Amplitude Factors of Loading Imperfections 

The orthogonality conditions for critical modes of elastic members with any 

kind of boundary conditions were discussed in Chapter 3. The solutions from the 

eigenvalue analysis, which were also discussed there, lead to a set of linear 

homogeneous equations where a non-trivial result at each critical load Pci requires 

£/φ|ν(χ) + Pcj4>;'(x) =t.O i = 1,2,... (4·5 0) 

In order to determine the amplitude factors of a non-proportionate loading 

imperfection, Eq. (4.50) is multiplied by the linear displacement wn(x) and is 

integrated over the entire length L of the member 

| LEI$(x) w n(x)dx + Pcif %"(χ) wn(x)dx = 0 . (4.51) 

Integrating the left hand side of Eq. (4.51) by parts and equating to zero transforms 

this equation into 

f LEI4?' (JC) w n"(x) dx - P. f L^Ax) w n'(x) dx 
J° J° (4.52) 

= - {w*(x)[EIU\x) + Ραύ<ά])ι+ [wn\x)EI^'(x)]L

o . 

Eq. (4.52) holds for a member of the structure; by summing this equation for the 

entire frame we obtain 

Σ fo

LEI^(x)wn"(x)dx - Pci^^{x)wn\x)dx 
M 

M M 

The two terms of the right hand side of this equation represent the work done by 

shear forces and bending moments at the ends of the members. Hence due to 

equilibrium considerations at the joints of the structure, these terms vanish except 

where they refer to the ends of the members at points of support. If it is assumed 
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that the frame is supported so that the reactions at the external supports do not work 

when the structure deforms, (i.e. a pinned, free, or fixed end support), the terms on 

the right hand side entirely vanish, and equation (4.53) becomes 

J^fG
LEI^(x)wn\x)dx-'£Pcifyi(x)wn\x)dx = 0 . (4.54) 

M M 

Expressing wn(x) in terms of critical mode functions and substituting into the 

second term of Eq. (4.55), using the orthogonal relation (3.37) yields 

£ fo
LEltf(x)wn\x)dx - wt

n£ PdJ Vi2(*)Ä = 0 . (4.55) 
M M 

Using the normalising relation (3.39) in Eq. (4.55), the ith amplitude factor of the 

non-proportional loading imperfection can be obtained 

Y/f
LEI<i>'-(x)wn\x)dx 

w.n = JL_1 . (4.56) 

Y;fLm't%)dx 
M 

Conversely the expression for wn(x) can be substituted into the first term of Eq. 

(4.54), where, following the same procedure as above, yields 

Y,CpjM)wnXx)dx 
wn = J£ _ ( 4 i 5 7 ) 

Σ fQ

LPcM\x)dx 
M 

The same procedure may be used for the case of proportional loading. Here the same 

formula as Eq. (4.56) is obtained, except that the superscript η is replaced by the 

corresponding p . 

An example of using the amplitude factor, as expressed in Eq. (4.56), for 

calculating the sway loading imperfection when both ends are fixed rollers, is given 

in section B.4 of Appendix B. 



Chapter 5 

Interaction of Elastic Stability 

- Material Failure 

5.1 Elastic-Plastic Behaviour 

Before analysing or designing a structure it is necessary to establish a mental 

image of the general behaviour of the material to be used. Then a theory can be 

developed to formulate and analyse a mathematical model of the structure. In steel 

structures a pure elastic material never exists in reality. The term 'inelastic' may be 

used for a structure to show that its material does not follow Hooke's law. The 

simplest case of inelastic response is a plastic behaviour which occurs when the 

material is elastic-plastic. A realistic material behaviour of Fig. 5-1 may be thus 

idealised to a form shown in Fig. 5-2. In this idealisation the region of linear 

elasticity is considered to finish when the yield stress is reached, after which follows 

the region of perfect plasticity. For this reason the term perfect plastic material is 

often applied to an elastic-plastic material. 

Structural steels may be idealised as elastic-plastic materials because they 

have sharply defined yield points and undergo large strains during yielding. The 

assumption of perfect plasticity after the yield point, means that the effects of strain 

hardening are disregarded. However, since strain hardening provides an increase in 

the strength of the steel, it is generally safe to disregard it. The upper yield point of 

rolled steel sections, for instance in a stress-strain diagram, is not often exhibited; 

normally it is ignored and the lower yield point is taken as index of the yield stress. 

The same applies for the strain £sh at the beginning of strain-hardening which is 

usually considerably greater than that at yield point ey. 

Current research on structures and strength of materials is generally 
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Figure 5-1 

Strain 

Figure 5-2 

concentrated on both their elastic and plastic behaviour. In an attempt to model this 

behaviour in ductile materials such as mild steels, the yield characteristics were first 

specified before the elastic-plastic theory is developed. 

In Fig. 5-2 line OBC is considered as representative of the stress-strain 

relationship of the steel structure and constitutes the basis of the elastic-plastic 

theory, where elastic strains are taken into account. Therefore, in the design of a 
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steel structure, this theory allows consideration of both the elastic stability and 

material failure. 

5.2 Design Model 

The term 'design' in structural engineering may have a multiple use, usually 

referring to the determination of either the cross section of one or more structural 

members or their maximum loading capacity/so that a structure, as a whole, having 

been made with economy and elegance, can safely resist the forces to which it may 

be subjected. 

Depending on the use of the structure, the definition for the safe design 

varies. If the structure is made so that no permanent distortion is created when it is 

under the applied loads, the elastic theory will be employed. In this case, the design 

criterion -called working stress design - will be based on the fact that the maximum 

stresses which develop on the elements must remain lower than the yield stress. 

On the other hand in determining the ultimate load capacity of a structure, 

the size of its members are chosen in such a way that a simultaneous collapse should 

be possible to occur. In this case the elastic-plastic theory is used, where it is 

assumed that the members remain elastic up to collapse load, when a plastic hinge 

is produced somewhere in the member. This design criterion is called the ultimate 

strength design. 

In the design of steel structures on the basis of their ultimate load capacity, 

referred to as plastic design, the service loads for the structure are multiplied by the 

load factor to obtain the ultimate loads. The structure is designed for ultimate-load 

conditions, using the concepts of plastic analysis. This approach contrasts with the 

more familiar elastic design, in which a safety factor is applied to the yield stress 

to give an allowable stress after which the structure is designed through concepts of 

elastic analysis, so that the allowable stress is not exceeded. 
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The essential difference between the two methods is that plastic design leads 

to a structure having a more or less uniform factor of safety against failure of all its 

parts, whereas an elastically designed structure has a uniform factor of safety against 

yielding. Due to redistribution of bending moments during the inelastic action, it is 

obvious that structures designed by these two methods will have different relative 

proportions of their parts. 

5.3 Strength Model 

Consider the beam-column in Fig. 5-3 as a component of a rigid-jointed frame 

subjected to a general loading system (proportional and non proportional). During 

Figure 5-3 

loading, each cross section is under the combined action of an axial force Ρ and a 

bending moment M, as shown in Fig. 5-4a. For an elastic-plastic material in the 

elastic range, the stress distribution across the depth of the cross section varies 

linearly from one extreme fibre to another. 

If the design criterion is to achieve first yield in structural members, the 

maximum stress, occurring at the extreme fibres of the cross section, where the 
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maximum bending moment is located, has to remain below or equal to the yield 

(a) (b) (c) 

Figure 5-4 

stress, as shown in Fig. 5-4b. Denoting with P. the axial load required to produce 

the yield stress σγ at one of the extreme fibres, regardless of the geometry of the 

cross section, the relationship between the axial load and the bending moment is 

governed by the equation 

Ρ M 
A Ζ y 

Ρ Μ Λ or — + — s 1, 
Py My 

(5.1) 

where A is the area and Ζ the elastic modulus of the cross section. 

In Fig. 5-5, Eq. (5.1) is represented from line AB, showing the strength limits 

as long as the material remains elastic. In this graph, Ρ =Ασ is the axial load of 

the column at full yield condition in the absence of bending moment, and Μ = Ζσ 

is the elastic moment capacity of the member in the absence of axial load. 

If the design criterion is to achieve the ultimate load capacity of the member, 

once one of the extreme fibres yields, the stress in this fibre should remain constant 
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until the stresses in all the fibres of the cross section reach the yield point, as shown 

in Fig. 5-4c. Let Pfh be the axial load required to produce this situation. Unlike the 

working stress method, the relation between axial load and bending moment in the 

ultimate strength method depends on the geometry of the cross-section and generally 

can be written as 

Eq. (5.1) 

Eq. (5.2) 

Figure 5-5 

M. + a, 
ifjt) 

+ a . 
yp,, 

= a, (5.2) 

where M = Sa is the plastic moment capacity of the cross-section in the absence 

of axial load and S is the plastic section modulus. The parameters av a2 and <x3 

vary for different cross-sectional shapes. For a rectangular cross-section, Eq. (5.2) 

becomes 

M_ 
M_ 

1 . (5.3) 
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It was found by Chen and Nethercot that for the same shape of cross-

section the parameters au a2 and oc3 do not vary significantly when the size of the 

section changes. As an approximation for the sections of the same shape, these 

parameters from both investigators are given in table 5.1. Chen's parameters refer 

to a wide flange section bending about its major and minor axis, while Nethercot's 

refer to rolled I and H sections. 

Table 5.1 Function parameters of Eq. (5.2) 

pfh 

For .. <; -UL <; 
Py 

Chen Nethercot 

« 1 

Che Net 

« 2 

Che Net 

« 3 

Che Net 

Bending about s t r o n g axis 

0 .. 0.225 

0.225 .. 1 

0 .. 0.200 

0.200 .. 1 

0 

1.03 

0 

1.125 

2.378 

0.085 

2.5 

0 

1 

1.115 

1 

1.125 

Bending about w e a k axis 

0 .. 0.252 

0.252 .. 1 

0 .. 0.447 

0.447 .. 1 

0 

-0.82 

0 

0 

0.185 

1.709 

0.5 

1.125 

1 

0.888 

1 

1.125 

Fig. 5-5 shows the expression given by Nethercot for the weak axis. The ratio Μ ΙM 

is taken to be 1.51, which is almost correct for I and H sections bending about their 

minor axis. 
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5.4 Linear Failure - Squash Load 

In the preceding section it has been assumed that the internal forces of each 

cross-section were known. In reality, however, these forces not only are unknown 

but they have to be analysed and calculated as accurately as possible. The linear 

analysis is the first and simplest stage for this calculation, based on the elastic 

theory, where the equations of equilibrium are derived assuming that the structure 

remains undeformed. \ 

Although the stress-strain relationship includes both the elastic and plastic 

responses of a structure, the stiffnesses of its members are assumed to be constant 

during the increase of load. As a result, a linear relationship between load and 

displacement may exist. In this case a line which represents the change between the 

load and the moment in an ever-increasing system of loading (Fig. 5-6), will 

intersect the plastic failure curves 1 and 2 at different points, providing thus a limit 

of failure in this analysis. 

This type of failure is often called linear failure. Since this analysis 

disregards the effect of instability, the only criterion considered in determination of 

the member sizes and/or the loading capacity is material failure. Therefore, axial 

loads, corresponding to the intersection points of the load-moment line with plastic 

curves 1 and 2, are loads of material failure. 

The axial loads which correspond to the intersection points with curves 1 and 

2 are termed material failure loads occurring at the first yield, Pf , and the first 

hinge, Pfh, respectively. Referring back to Fig. 5-3 where a beam-column is under 

an increasing axial load, three different cases of linear failure are considered. 

a) Without loading imperfections 

In the absence of loading imperfections, during the increase of axial load, no 

bending moment will be developed along the member length, even if the member 



Chapter 5 - Interaction of Elastic Stability - Material Failure 91 

is not perfectly straight. This is because the effect of instability is ignored in linear 

analysis. In Fig. 5-6 this analysis is shown by the line OA. This line intersects both 

plastic failure curves 1 and 2 at the same point A, where P/P - 1. 

P/P, 
Eq. (5.1) 

Eq. (5.2) 

Figure 5-6 

In the absence of bending moment, the load corresponding to this point is 

called the squash load. Here the material failure loads corresponding to the first yield 

and first hinge are equal, i.e. 

Jy _ 1 (5.4) 

fh _ = 1 (5.5) 

b) Non-proportional loading system 

The presence of a non-proportional loading system here results in the 

existence of a bending moment, which is independent of the axial load. The 
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magnitude of this moment is obtained for each cross-section through a linear 

analysis. If m" is the maximum bending moment on the member, during the 

increasing axial load, line BCD, with Β at m n/M in Fig. 5-6, will represent the 

result of this analysis. This line intersects the plastic failure curves 1 and 2 at points 

C and D, corresponding to linear failure of the member through the working stress 

method and ultimate strength method respectively. The corresponding material 

failure loads, occurring here at two levels, scan be obtained by replacing Ρ and M 

with Ρ ft and mn in Eq. (5.1) and also M with m" in Eq. (5.2), i.e. 

fy = 1 m (5.6) 

a, 
•Jh 

+ αΊ 

ypy> 
a, 

m" (5.7) 

c) Proportional loading system 

Here all the non-proportionate load components of the member are zero and 

the linear analysis provides a linear relationship between axial load and bending 

moment. If rrf is the linear bending moment in a typical cross section, the term 

e=mp/P may express an initial eccentricity of loading, which remains constant 

throughout the load increase. In this case the straight line OEF, representing the 

load-moment relation, has a slope, e/(Z/A), with the vertical axis. 

The material failure loads, obtained from the intersection points of OEF with 

the plastic failure curves 1 and 2, occur at different levels, as in case (b). They can 

be calculated by substituting Ρ and M for PfY and P^e in Eq. (5.1) and also M for 

Pfhe in Eq. (5.2), i.e. 

• f y _ 
1 

1 + el(ZfA) 
(5.8) 

SIA 
+ α, 

Jh 
+ an a, (5.9) 
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d) General mixed loading system 

As a final case, the member is considered to be under both a proportional and 

non-proportional loading system, as shown in Fig. 5-3. If mn and mp are the 

corresponding magnitudes of bending moments, since nf depends on the axial force, 

it can be written as mp = Pe, where e is thé initial eccentricity. In this case, line 

BGH, with Β at m'VMY and at a slope e/(Z/A) as in the previous case shows the result 

of this linear analysis. This line intersects the plastic failure curves 1 and 2 at points 

G and H, providing thus the corresponding squash loads for the two methods. 

Substituting Ρ and M for Pfy and mn+Pfye in Eq. (5.1), Pfy is obtained, while putting 

mn+Pjhe in place of M in Eq. (5.2) the corresponding expression for Pfh can be 

derived. 

fy _ 

[S/A 
+ a, 

fh 

1 m" 

1 + 

+ a. 

ZjA 

' p \2 

= « 3 -

y / 
M.. 

(5.10) 

(5.11) 

5.5 Elastic Critical Load 

The material failure load as discussed in the preceding section is a limit load 

for a beam-column, when the material failure is considered. Similarly the elastic 

critical load is another limit when we refer to elastic stability of the member. The 

analytical calculation of the elastic critical load was discussed in chapter 3. The 

instability problem in a rigid jointed frame may be generally classified as either 

member or frame instability. 

When a frame is completely braced against side-sway, the only instability 

problem is member instability. The lowest elastic critical load can be obtained either 

by an eigenvalue analysis or by effective length charts. In a frame where side sway 
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is not prevented, both member instability and frame instability have to be 

considered. 

Regarding both member and frame instability in chapter 3, the Eigenvalue 

analysis showed that a perfect column might bifurcate at several load levels. Each 

one of them is the elastic critical load corresponding to a different mode (shape) of 

the unstable member. In determining the buckled shape of this column two kinds of 

critical modes may be classified: * 

i) Symmetric, associated with non-sway and 

ii) Antisymmetric, associated with sway. 

The term symmetry is used here when the buckled shape is symmetric with respect 

to an axis perpendicular to the mid-length of the column, whereas antisymmetry is 

used when the buckled shape is symmetric with respect to the mid-point of the 

column. For a member, considered as part of a rigid-jointed frame, the ratio of the 

loads for the first symmetric critical mode to the first antisymmetric one can vary, 

depending on the boundary conditions (end restrains) and the stiffness of the 

surrounding frame. 

The main theme of this thesis is to highlight those situations where the first 

two critical loads, as a result of the frame geometry, may be close together and 

consequently both critical modes contribute to the elastic-plastic imperfection 

sensitivity. In design and analysis the first critical load is of supreme importance 

because it provides an upper bound solution for an elastic-plastic beam-column when 

the effect of material failure is not involved in the corresponding procedure. 

5.6 Design Criteria 

In the discussion developed in previous Chapters, it was established that the 

imperfection approach is the only rational way to predict the strength of a column 

presenting one degree of freedom. According to this analysis, the column strength 

for this degree of freedom was found to be a function of the Euler' s critical load, 
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Pc, and the total equivalent imperfection. 

For a given column, presenting more than one degrees of freedom (biaxial 

buckling, sidesway frame-buckling), an efficient design would therefore meet the 

following requirements: 

a) maximization of Euler's critical load 

b) minimization of total equivalent imperfection and 

c) close buckling strength for each of the available degrees of freedom of the 

column. 

The first requirement can be covered through any standard structural 

mechanics text book while the second can be accomplished by improvements in the 

manufacturing process, the quality of workmanship and the loading pattern of the 

structure. The third requirement, concerning the simultaneity of buckling in all the 

degrees of freedom, is a subject of the coming theoretical investigation and does not 

appear to have been addressed in the available design codes. The term simultaneity 

of buckling has here a relative meaning, indicating that the difference between the 

buckling strengths should be as small as possible; if the buckling strength of one 

degree of freedom is significantly higher than that to initiate instability or failure to 

the other degree(s), then a situation arises at failure, in which much of the buckling 

resistance with respect to the other degree(s) remains unutilized. This simultaneity 

may be accomplished as a result of optimisation of the column's geometry in 

combination with an optimisation of its surrounding frame, i.e. by a proper choice 

of cross section sizes and lengths of the frame. Such optimisation is shown in Fig. 

6-1 for the sway and non-sway critical loads versus the ratio of the beam's over the 

column's second moment of area. 

Equivalent argument could be applied for biaxial buckling; Fig. 5-7 shows 

in sketch that for a column with constant I section, its critical loads, corresponding 

to each of the two axes, being dependant on the cross sectional and effective length 

characteristics, may be represented by different curves, the intersection of which 

gives the optimum geometry with a simultaneity in buckling loads. 



Chapter 5 - Interaction of Elastic Stability - Material Failure 96 

p 
c 

\W 
buckling 
about 

!χχ- left y 

'yy • 'effx 

Figure 5-7 

Columns with comparable strength with respect to all degrees of freedom will 

experience an interaction between various buckling parameters of these degrees. 

Possible reduction in the load carrying capacity, resulting from this interaction is not 

explicitly covered by current design codes, including those in BS 449 and BS 5950. 

The criteria which are going to be used in the determination of the buckling 

strength, as described in the present Chapter, are: 

1. The First Yield Condition, where the column is considered to have failed 

if the stress at some point on the cross section, at which the maximum bending 

moment occurs, reaches the yield level. The axial load causing the initiation of 

yielding in the column, according to this criterion, is a lower bound to the collapse 

load, and 

2) The First Plastic Hinge Formation, where the column is considered to 

have failed when the stresses have reached yield at every point on the cross section 

at where maximum bending moment occurs. This consideration is not far from 

reality even for a restricted column which composes a part of a frame. This is 

because the second and third plastic hinges, necessary to convert the structure (after 

redistribution of bending moments) into a mechanism, are formed almost 

simultaneously without a significant increase of axial load. Therefore the load 

necessary to cause a plastic hinge formation may be considered as a close upper 

bound to the collapse load. 
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5.7 First Yield Analysis 

The initial out-of-straightness, usually referred as the geometric imperfection, 

can be expressed in terms of a converging series as 

w°(x) = JTwft.Oc) (5.12) 

where, for the ith mode, φ.(χ) is the characteristic function and w° is the amplitude 

factor termed as modal geometric imperfection. 

If an axial load Ρ is applied, a non-linear increase of deflection will be given 

by 

W W = Σ -^-Bwiït<à (5,13) 

i=l PcCP 

which when added to the initial imperfection gives a total displacement 

"'<*> = Σ - ^ W < ° < M * > · ( 5 · 1 4 ) 

«=1 P c i F 

The amplitude factor 

w. = w.° (5.15) 
' Pcr Ρ 

which corresponds to the non-linear increase, can be similarly derived for 

proportional, wp and non-proportional, wn, loading imperfections because the 

corresponding equations are identical. So we can write 

w ^ - ^ - C , (5.16) 
* ci 

where Ct = wf + wf + w" is the amplitude factor of the total equivalent 
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imperfections. 

The non-linear deflection due to the axial load, being therefore 

w (5.17) 

gives rise to the calculation of bending moment at any section, which thus is 

_ 

M = -EIw"(x) = -ΕΙΣ —*— ί<Φί'(*) + mp + mn 

»=1 P c i P 

(5.18) 

where mp(x) = -EIwp (x) and mn(x) = -EIwn (x) are linearly obtained 

bending moments. 

The maximum stress of the column, occurring at the extreme fibres of the 

concave side of the cross section that bears the maximum bending moment, is given 

by the equation 

Ρ M 
σ = — + — 

m Α Ζ 

(5.19) 

which, after substitution for M from (5.18) yields 

Ρ EI 
a - — + — 

* A Ζ 

mp(x) m\x) (5.20) 

If we consider that only two of the first critical modes contribute to the 

maximum bending moment, i.e. the sway mode, associated with antisymmetric 

configuration, and the non-sway, associated with symmetric, we can write 

Ρ EI 
a = — + — 

m A Ζ 
Ρ -Ρ 

CS 

ί,φ» 
p cX'w 

Ρ Ρ 
en 

mp(x) + mn(x) ( 5 2 1 ) 

Ζ Ζ 

Assuming the column to have failed when σ = σ , in the absence of linear 
ο m y 
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moments, a lower bound to the collapse load, Pb, is given by the solution of the 

equation 

y _ 
P

b . PCs
P

b t.* . PcnPb U 

A P-Ph Ζ 
CS ο 

Pcn~Pb Ζ 
(5.22) 

where : Pcs, Pcn are respectively the 1st and 2nd critical loads, 

ξ , ξη are the corresponding amplitudes of the total equivalent 

imperfections as defined from Eq. (4.45) and 

α, β are curvature parameters which are numerically calculated and 

can be theoretically derived, as in Eq. (4.48), as follows: 

The first derivative of the corresponding characteristic function (function-index s fora 

and η for β ), is equated to zero, yielding the location of maximum deflection, 

which can then be calculated. If φ. is the maximum value of the ith 

max 

characteristic function, the ratio 
4>i 

is the normalized characteristic function. The 

second derivative of this ratio divided by - kci gives the corresponding value for 

a (i=s) and β (i=n). 

A theoretical handling to solving this equation is not easy because the 

location of maximum bending moment for each mode-case is different. The 

maximum sum of bending moments for the first two modes, therefore, can only be 

calculated through computer based iteration techniques. 

Rewriting Eq. (5.22) in a non-dimensional form and rearranging yields 

Pf-P^csPsa+PcnPn^+Pcs+Pcn^PlPcMPsa + Pn^ + lyPcs+Pcn]-PcsPcn^° ( 5 ' 2 3 ) 
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P, 
where: ρχ - — is the unknown non-dimensional load at first yield 

y 

Pc Pc 

ρ „ = —— , ρ „ - —— are the first two non-dimensional critical loads and 
tcs ρ ' *en ρ 

y y 

A A 
ρ = ξ —, ρ = ξ — are dimensionless imperfection parameters, in 

which Ζ is the elastic section modulus. 

As pn - 0, Eq. (5.23) can be reduced to equation 

Pl-Pl(PcsPS

a +Pcs+Pcn+1)+Pl[PcsPcn(Psa + 1)+PcS

+Pcn}-PcsPcn= ° ^ ^ 

which is the Ayrton-Perry expression for the sway buckling. Similarly, as ps - 0 

Eq. (5.23) provides the Ayrton-Perry equation for the non-sway buckling 

Ρ ι 3 ^ ι 2 ( ^ η Ρ η β + Ρ Μ

+ ^ „ + 1 ) + Ρ ι [ ^ Ρ „ ( Ρ „ β + 1)+ΡΜ

+Ρ£„]-^/>ο„=0 (5·2 5> 

The above single-mode cases represent respectively the intersections of the (p, ps) 

and (p, pn) planes with the imperfection sensitivity surface at first yield shown in 

Fig. 5-8. Furthermore, they can be considered to be originated or derived from the 

original Ayrton-Perry equation (1.4), which is thus validated. Indeed, using the 

above notation, Eq. (1.4), for the non-sway case can be written as 

(pen-plHl-p1)-pplPcn-Ot (5-26) 

which, after factorisation by {pi~p s) * 0 and rewriting, takes the form 

PÌ~pUl+Pcs+Pcn+ PPj+P^Pcs+Pcn + PcSPcn+PPcsPcnyPcSPcn = ° ^ ' ^ 

that is exactly the same with the corresponding given in Eq. (5.25), where the 

parameter β is used to compensate for the buckling shape in this mode. Similarly 

Eq. (1.4) for the sway case can be written as 
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0 > „ - Ρ ι ) Ο - Ρ ι ) - Ρ Ρ ι / > „ = 0 (5.28) 

which, after factorisation by (p1 -p ) * 0 and rewriting, takes the form 

p, -p, (1+p +p + op )+ρΛρ +p +p ρ +ρσ ρ )-p ρ = 0 w-29) 
tr\ f\ ν fCs r en rrCs

J ^\K^cs ^ en r c s r c n r f csf Cn' ^cs^cn 

that is exactly the same with the corresponding given in Eq. (5.24), where the 

parameter α is used to compensate for the buckling shape in that mode. 

In the case of loading imperfections, where a non-proportional linearly 

obtained bending moment m n is present at the cross section of maximum moment 

coming from both modes, the total bending moment 

PP 
m 

cS 

Pcs-Ρ 
ξ,α + 

PP cN 

Ρ -Ρ 
rcN r 

lN$ + mn (5.30) 

arising from Eq. (5.21) must be simultaneously satisfied with 

m 

m_ 
( - 1 
[Pyl 

(5.31) 

holding for rectangular cross section where Ρ - a bd and m = a bd2/4. 

Eq. (5.30) can be non-dimensionalised with respect to aplastic squash load, 

Ρ , defined from (5.31) as 

(P \2 

P 

ypy, 

1- m 

m. 
(5.32) 

and therefore it becomes 

m 

m. 

PP.s ξ,« ΡΡ^.ΪΝΙ+ mn 

+ 
Pr«-P mn PM-P mn 

ci p cN p 

ni- = i -
m_ 

'Lf 
S,) 

or (5.33) 



Chapter 5 - Interaction of Elastic Stability - Material Failure 102 

PPcS 5,« , PP.» W ( D\2 

Ρ a-P ™n 
cS ρ 

PCN-P m

P v p» 

(P \2 

Ρ 

KPyJ 

(5.34) 

Multiplication by (Ρ jP) gives 

PPrS L* (Py)
2 PPcN ξ^ίΡΛ2 (Ρ)2 

PcS Ρ m Ρ V Ρ) Ρ -Ρ 
rcN Γ 

m. KPPJ Λ, 
(5.35) 

which upon use of 

Pes s 
cS 

'cN 

Ρ Ρ 
- ^ and ρ * - ^ 
pn pn 

ρ ρ 

(5.36) 

results in 

»-.^^.M,..,.,. 
Pes-Ρ m

P 

yJTy 

PeN-P mp 
yfy or (5.37) 

PPes(PeN-P)P*sPya+PPeN(PeS-PÏP*sV = (l~P2) (PCN~P^PcS~P^ ( 5 " 3 8 ) 

, * t>SAay tsA
 A * *>NA 

where p s = -*- = —- and pN = —— 
α Ζ Ζ Ζ 

y ρ ρ ρ 

Solution of Eq. (5.38) for ρ yields p. , where from, eventually, the first yield over 

the squash load (in the absence of mn) ratio can be obtained from 

•Jy 
PfP 

\ 

1 m 

m. 

(5.39) 

From this point of view, when loading imperfections arise from linearly applied 

bending moments, the final result of Pfy/Py ratio has to be obtained through Eq. 

(5.39). 
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Given the geometry of the column, its first two critical loads and loading 

imperfection parameters are either known or can be calculated. Therefore, Eq. (5.23), 

which is independent of the shape of the cross section, can be solved by iterative 

techniques for the non dimensional buckling load. 

Figure 5-8 

The solution of the above equation has been realised and verified through two 

independent iterative computational techniques, one of which is the Newton-Raphson 

approximation. This approximation has been incorporated in the main program for 

a cross-checking of the results. The algorithm of the subroutine which belongs to the 

main program is described in the end of section 5.8. 

The objective here was to establish the extent of interaction between the 

imperfection parameters on the buckling strength of the column. This strength can 

be varying as shown in Fig. 5-8 for the pj surface. 

For an illustrative frame geometry, the reduction of the buckling strength of 

the column at first yield, presenting sway and non-sway imperfections and obtained 
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through the above subroutine of the program, is given in Fig. 5-9. 

The result highlights the effect that the sway and non-sway imperfections 

have on the quantative reduction of the yield load of the column. This reduction is 

increased as the difference between Pcs and Pcn decreases. The maximum reduction 

corresponds to Pcs = Pcn. 

Ρ. ws b-t - S mm 

II 

or 

1.11 1.48 1.85 2.22 2.59 

Sway Imperfections pg 

Figure 5-9 

3.33 

5.8 Plastic Collapse Analysis 

In this section as a subsequent step of the first yield analysis, a mechanism 

by which a plastic failure occurs, is to be examined. 

The Generalized Ayrton-Perry (G.A.P.) imperfection approach, as discussed 

in Section 4.5, has fully identified the non-linear response of imperfect columns. In 

Section 5.7 this approach has been extended to cover the case of two-mode-buckling, 

where it was found that for columns containing imperfections with respect to two 

different modes (degrees of freedom) occurring in the same plane, there will be two 
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modes contributing to the bending moments about the minor axis, both of which are 

non-linearly related to the axial load. This means that the bending moment at each 

cross section will have components contributed from both the sway and the non-

sway modes. 

For a given geometry of the column with corresponding boundary conditions 

arising from the stiffness of its surrounding frame and imperfections from both the 

sway and the non-sway modes, there always exists a plastic collapse surface, similar 

to the imperfection sensitivity surface fc>f Fig. 5-8, which depicts all possible 

combinations between axial load and imperfections of both modes, that can exist in 

equilibrium with a fully plastic section. 

In this coordinate system there is always a space-line, referred to as the 

Elastic Non Linear Path, which the above column follows as its axial load increases. 

This path is a function of the axial load, the first two critical loads, and the 

imperfection parameters corresponding to the first two modes. 

The point where the elastic non-linear path intersects the plastic collapse 

surface is considered to be a close estimate of the upper bound solution to the 

collapse load. 

The relationship between axial load and bending moment in an imperfect 

column has been given by Eq. (5.18). This equation, taking stresses for first yielding 

into account, has been eventually transformed into Eq. (5.22). Referring to this 

equation and following the same line of thought but in the case of full plasticity, we 

can end up in the equation 

PÌ-PÌ(Pc,P> +PcnPn ß +PCS
+Pcn+ X)+Pl 

which is similar to Eq. (5.23), but, while pcs, pcn keep the same values, 

ρ 
p~ = —&- is the unknown non-dimensional load at first hinge and 

Py 

* A. * A 
ps = ξ — , pn = ξ η — are dimensionless imperfection parameters, in which 

PC!Pcn(^a + ^ + 1)+PcS

+Pcn - P C A » = 0 ( 5 " 4 0 ) 
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Zp is the plastic section modulus of the cross section. 

For comparison reasons Fig. 5-10 illustrates the reduction of buckling strength 

of the column at first hinge, obtained for a frame geometry which is the same with 

that used for the first yield. 

Ì«N 

Non-sway imperfections Ρ ws b1 = 5 mm 

Sway Imperfections ps 

Figure 5-10 

To cover not only the two-mode-contribution but a more general case, where 

a larger number of critical modes is demanded, an extension of the subroutine used 

in the main computer program for the first yield load, was developed according to 

the following algorithm: 

a) Initially a zero axial load, P, is given. This load, which is increased at each 

step by small increments, dP, is then compared with the first critical load, Pc l and 

the squash load, Py. 

b) If Ρ < Pcl and Ρ < Py, then the following c, d and e steps are executed, 
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otherwise the first critical load or the squash load are respectively announced as 

failure load. 

c) The contribution that each one of the demanded critical modes has, 

i) in the deflection of the column (buckling shape) 

ii) in the moment due to first,yield, Mfy and plastic hinge, Mph and 

iii) in the elastic non-linear bending moment, Mnl, is calculated. 

d) Mnl is compared with Mfy. If M^ < Mfy, then the values of P, Mnl, Mfy and 

Mph are recorded in a file to be further used as data for the elasto-plastic path graph 

and a new increment of load is added to the previous value. This procedure is 

repeated until either Mnl = Mfy, or Mnl > Mfy, when a negative half increment, -dP/2 

is added, so that the load level for initiation of yielding should be exactly located, 

when after it is announced. 

e) Provided that Ρ < Pcr, the load-level for plastic hinge formation is similarly 

located and announced, when further calculations stop. 

An output of the software results obtained for both first yield and first hinge 

failures is given at the end of this chapter. 

5.9 The Effect of Buckling-mode-interaction 

The phenomenon of interaction between the sway and the non-sway buckling 

modes, as discussed in Chapter 1, has different effects on the failure at different 

locations of the column. 

For a column without imperfections belonging to a certain frame geometry, 

the first yield over the squash load ratio, ρχ, has a definite value. Application of 

different combinations of imperfections (ps, pn ) on this column, results of course 

in a reduction of px. The different values of ρλ, corresponding to each pair of 
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mid span 

failure 

Surface is not sensitive to 

interactive elastic-plastic buckling 

Figure 5-11 

ps, pn may be depicted, as discussed in Section 5.7, in the first yield imperfection 

sensitivity failure surface px ; for each failure point of the surface, the location of 

yielding along the column's length may be anywhere (end, mid span or somewhere 

in between). However, if we are interested in having yielding failure at a certain 

localized column area (mid span or ends), then the resulting points should compose 

a surface which may or may not be sensitive to interactive elastic-plastic buckling. 

This is because the failure effect of the sway imperfections is mainly limited at the 

ends of the column and secondarily at the middle. The same does not apply with the 

non-sway imperfections, which influence the yielding failure mainly at the mid span 

and secondarily at the ends. 

Fig. 5-11 illustrates the effect of interaction between the two buckling modes 

in the presence of both imperfections when the yielding failure occurs at mid span, 

while Fig. 5-12 depicts a corresponding quantitative interaction effect for end 
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1 Imperfection sensitivity 

Figure 5-12 

yielding failure. Both surfaces correspond to the same frame geometry where the 

same incremental amount of both imperfections was applied. 

In Fig. 5-11, where only mid span failure is considered, px does not seem to 

reduce in the presence of only p s . This does not necessarily mean that ρχ is 

constant; it reduces according to Fig. 5-12 due to an end failure. However, if first 

yielding was prevented at the ends of the column, say by gradual local increase of 

cross section sizes, then px would actually keep a constant value as shown in Fig. 

5-11. 

5.10 Output of Failure software Results 

In this section a full set of' data and results concerning the frame geometry 

and the graphs shown in Fig. 5-10 (first yield) and 5-11 (first plasticity) is presented 
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for a range of sway and non-sway imperfections. 

M E M B E R P R O P E R T I E S 

No L b d A I Zel Zpl Y.str 

1 298.00 5.00 13.00 62.44 125.70 50.28 81.45 0.360 
2 286.00 6.00 13.00 73.44 209.00 69.67 117.71 0.360 
3 298.00 6.00 13.00 73.44 209.00 69.67 117.71 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame = 1398.21 kN*mrn/rad 
Rotational ANTISYMMETRIC (Sway) Stiffness of frame = 1706.41 kN*mm/rad 

Translational (Sway) Stiffness of frame = 27.93 N/mm 
E I G E N V A L U E S & E I G E N V E C T O R S 

Sol 

1 
2 

kL 

5.642 
5.736 

Pc 

8.7871 
9.0802 

Cl 

1.00 
1.00 

C2 

-0.332 
3.560 

delta 

0.000 
-24.006 

theta_A 

0.006 
-0.005 

Mode-Case 

Non-Sway 
* Sway 

SQUASH Load = 22.477 kN 

P O I N T 1 of C U R V E 1 
Run 1) For RHO_sway = 0.37, RHO_non-sway = 0.37, are: 
First YIELD Load = 7.865 kN, Pfy/Py = 0.350 at χ = 158.93 mm 
First HINGE Load = 8.336 kN, Pfh/Py = 0.371 at X = 158.93 mm 

P O I N T 1 o f C U R V E 2 
Run 2) For RHO_sway = 0.37, RHO_non-sway = 0.74, are: 
First YIELD Load = 7.801 kN, Pfy/Py = 0.347 at χ = 173.83 mm 
First HINGE Load = 8.314 kN, Pfh/Py = 0.370 at X = 168.87 mm 

P O I N T 1 of C U R V E 3 
Run 3) For RHO_sway = 0.37, RHO_non-sway = 1.11, are: 
First YIELD Load = 7.704 kN, Pfy/Py = 0.343 at χ = 183.77 mm 
First HINGE Load = 8.276 kN, Pfh/Py = 0.368 at X = 178.80 mm 

P O I N T 1 of C U R V E 4 
Run 4) For RHO_sway = 0.37, RHO_non-sway = 1.48, are: 
First YIELD Load = 7.580 kN, Pfy/Py = 0.337 at χ = 188.73 mm 
First HINGE Load = 8.223 kN, Pfh/Py = 0.366 at X = 183.77 mm 

P O I N T 1 of C U R V E 5 
Run 5) For RHO_sway = 0.37, RHO_non-sway = 1.85, are: 
First YIELD Load = 7.441 kN, Pfy/Py = 0.331 at χ = 198.67 mm 
First HINGE Load = 8.156 kN, Pfh/Py = 0.363 at X = 193.70 mm 

P O I N T 1 of C U R V E 6 
Run 6) For RHO_sway = 0.37, RHO_non-sway = 2.22, are: 
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First YIELD Load = 7.295 kN, Pfy/Py = 0.325 at χ = 203.63 mm 
First HINGE Load = 8.079 kN, Pfh/Py = 0.359 at X = 198.67 mm 

P O I N T 1 of C U R V E 7 
Run 7) For RHO_sway = 0.37, RHO_non-sway = 2.59, are: 
First YIELD Load = 7.146 kN, Pfy/Py = 0.318 at χ = 203.63 mm 
First HINGE Load = 7.996 kN, Pfh/Py = 0.356 at X = 203.63 mm 

P O I N T 1 of C U R V E 8 
Run 8) For RHO_sway = 0.37, RHO_non-sway = 2.96, are: 
First YIELD Load = 6.998 kN, Pfy/Py = 0.311 at χ = 208.60 mm 
First HINGE Load = 7.907 kN, Pfh/Py = 0.352 at X = 203.63 mm 

P O I N T 1 of . C U R V E 9 
Run 9) For RHO_sway = 0.37, * RHO_non-sway = 3.33, are: 
First YIELD Load = 6.856 kN, Pfy/Py = 0.305 at χ = 208.60 mm 
First HINGE Load = 7.816 kN, Pfh/Py = 0.348 at X = 208.60 mm 

P O I N T 2 of C U R V E 1 
Run 10) For RHO_sway = 0.74, RHO_non-sway = 0.37, are: 
First YIELD Load = 7.201 kN, Pfy/Py = 0.320 at χ = 153.97 mm 
First HINGE Load = 7.949 kN, Pfh/Py = 0.354 at X = 153.97 mm 

P O I N T 2 of C U R V E 2 
Run 11) For RHO_sway = 0.74, RHO_non-sway = 0.74, are: 
First YIELD Load = 7.170 kN, Pfy/Py = 0.319 at χ = 163.90 mm 
First HINGE Load = 7.935 kN, Pfh/Py = 0.353 at X = 158.93 mm 

P O I N T 2 of C U R V E 3 
Run 12) For RHO_sway = 0.74, RHO_non-sway = 1.11, are: 
First YIELD Load = 7.120 kN, Pfy/Py = 0.317 at χ = 168.87 mm 
First HINGE Load = 7.910 kN, Pfh/Py = 0.352 at X = 168.87 mm 

P O I N T 2 of C U R V E 4 
Run 13) For RHO_sway = 0.74, RHO_non-sway = 1.48, are: 
First YIELD Load = 7.054 kN, Pfy/Py = 0.314 at χ = 173.83 mm 
First HINGE Load = 7.876 kN, Pfh/Py = 0.350 at X = 173.83 mm 

P O I N T 2 of C U R V E 5 
Run 14) For RHO_sway = 0.74, RHO_non-sway = 1.85, are: 
First YIELD Load = 6.975 kN, Pfy/Py = 0.310 at χ = 178.80 mm 
First HINGE Load = 7.834 kN, Pfh/Py = 0.349 at X = 178.80 mm 

P O I N T 2 of C U R V E 6 
Run 15) For RHO_sway = 0.74, RHO_non-sway = 2.22, are: 
First YIELD Load = 6.885 kN, Pfy/Py = 0.306 at χ = 183.77 mm 
First HINGE Load = 7.784 kN, Pfh/Py = 0.346 at X = 183.77 mm 

P O I N T 2 of C U R V E 7 
Run 16) For RHO_sway = 0.74, RHO_non-sway = 2.59, are: 
First YIELD Load = 6.787 kN, Pfy/Py = 0.302 at χ = 188.73 mm 
First HINGE Load = 7.728 kN, Pfh/Py = 0.344 at X = 188.73 mm 

P O I N T 2 of C U R V E 8 
Run 17) For RHO_sway = 0.74, RHO_non-sway = 2.96, are: 



Chapter 5 - Interaction of Elastic Stability - Material Failure \\1 

First YIELD Load = 6.685 kN, Pfy/Py = 0.297 at χ = 193.70 mm 
First HINGE Load = 7.665 kN, Pfh/Py = 0.341 at X = 188.73 mm 

P O I N T 2 o f C U R V E 9 
Run 18) For RHO_sway = 0.74, RHO_non-sway = 3.33, are: 
First YIELD Load = 6.581 kN, Pfy/Py = 0.293 at χ = 193.70 mm 
First HINGE Load = 7.599 kN, Pfh/Py = 0.338 at X = 193.70 mm 

P O I N T 3 o f C U R V E 1 
Run 19) For RHO_sway = 1.11, ,RHO_non-sway = 0.37, are: 
First YIELD Load = 6.667 kN, Pfy/Py = 0.297 at χ = 153.97 mm 
First HINGE Load = 7.603 kN, Pfh/Py = 0.338 at X = 153.97 mm 

P O I N T 3 o f C U R V E 2 
Run 20) For RHO_sway = 1.11, * RHO_non-sway = 0.74, are: 
First YIELD Load = 6.649 kN, Pfy/Py = 0.296 at χ = 158.93 mm 
First HINGE Load = 7.593 kN, Pfh/Py = 0.338 at X = 158.93 mm 

P O I N T 3 o f C U R V E 3 
Run 21) For RHO_sway = 1.11, RHO_non-sway = 1.11, are: 
First YIELD Load = 6.619 kN, Pfy/Py = 0.294 at χ = 163.90 mm 
First HINGE Load = 7.576 kN, Pfh/Py = 0.337 at X = 163.90 mm 

P O I N T 3 o f C U R V E 4 
Run 22) For RHO_sway = 1.11, RHO_non-sway = 1.48, are: 
First YIELD Load = 6.579 kN, Pfy/Py = 0.293 at χ = 168.87 mm 
First HINGE Load = 7.552 kN, Pfh/Py = 0.336 at X = 163.90 mm 

P O I N T 3 o f C U R V E 5 
Run 23) For RHO_sway = 1.11, RHO_non-sway = 1.85, are: 
First YIELD Load = 6.529 kN, Pfy/Py = 0.290 at χ = 173.83 mm 
First HINGE Load = 7.522 kN, Pfh/Py = 0.335 at X = 168.87 mm 

P O I N T 3 o f C U R V E 6 
Run 24) For RHO_sway = 1.11, RHO_non-sway = 2.22, are: 
First YIELD Load = 6.471 kN, Pfy/Py = 0.288 at χ = 173.83 mm 
First HINGE Load = 7.486 kN, Pfh/Py = 0.333 at X = 173.83 mm 

P O I N T 3 o f C U R V E 7 
Run 25) For RHO_sway = 1.11, RHO_non-sway = 2.59, are: 
First YIELD Load = 6.404 kN, Pfy/Py = 0.285 at χ = 178.80 mm 
First HINGE Load = 7.445 kN, Pfh/Py = 0.331 at X = 178.80 mm 

P O I N T 3 o f C U R V E 8 
Run 26) For RHO_sway = 1.11, RHO_non-sway = 2.96, are: 
First YIELD Load = 6.334 kN, Pfy/Py = 0.282 at χ = 183.77 mm 
First HINGE Load = 7.400 kN, Pfh/Py = 0.329 at X = 178.80 mm 

P O I N T 3 o f C U R V E 9 
Run 27) For RHO_sway = 1.11, RHO_non-sway = 3.33, are: 
First YIELD Load = 6.260 kN, Pfy/Py = 0.278 at χ = 183.77 mm 
First HINGE Load = 7.350 kN, Pfh/Py = 0.327 at X = 183.77 mm 

P O I N T 4 o f C U R V E 1 
Run 28) For RHO_sway = 1.48, RHO_non-sway = 0.37, are: 
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First YIELD Load = 6.225 kN, Pfy/Py = 0.277 at χ = 153.97 mm 
First HINGE Load = 7.291 kN, Pfh/Py = 0.324 at X = 153.97 mm 

P O I N T 4 of C U R V E 2 
Run 29) For RHO_sway = 1.48, RHO_non-sway = 0.74, are: 
First YIELD Load = 6.214 kN, Pfy/Py = 0.276 at χ = 153.97 mm 
First HINGE Load = 7.284 kN, Pfh/Py = 0.324 at X = 153.97 mm 

P O I N T 4 of C U R V E 3 
Run 30) For RHO_sway = 1.48, RHO_non-sway = 1.11, are: 
First YIELD Load = 6.193 kN, Pfy/Py = 0.276 at χ = 158.93 mm 
First HINGE Load = 7.270 kN, Pfh/Py = 0.323 at X = 158.93 mm 

P O I N T 4 o f C U R V E 4 
Run 31) For RHO_sway = 1.48, RHO_non-sway = 1.48, are: 
First YIELD Load = 6.165 kN, Pfy/Py = 0.274 at χ = 163.90 mm 
First HINGE Load = 7.253 kN, Pfh/Py = 0.323 at X = 163.90 mm 

P O I N T 4 of C U R V E 5 
Run 32) For RHO_sway = 1.48, RHO_non-sway = 1.85, are: 
First YIELD Load = 6.132 kN, Pfy/Py = 0.273 at χ = 168.87 mm 
First HINGE Load = 7.231 kN, Pfh/Py = 0.322 at X = 163.90 mm 

P O I N T 4 o f C U R V E 6 
Run 33) For RHO_sway = 1.48, RHO_non-sway = 2.22, are: 
First YIELD Load = 6.091 kN, Pfy/Py = 0.271 at χ = 168.87 mm 
First HINGE Load = 7.203 kN, Pfh/Py = 0.320 at X = 168.87 mm 

P O I N T 4 of C U R V E 7 
Run 34) For RHO_sway = 1.48, RHO_non-sway = 2.59, are: 
First YIELD Load = 6.045 kN, Pfy/Py = 0.269 at χ = 173.83 mm 
First HINGE Load = 7.173 kN, Pfh/Py = 0.319 at X = 173.83 mm 

P O I N T 4 of C U R V E 8 
Run 35) For RHO_sway = 1.48, RHO_non-sway = 2.96, are: 
First YIELD Load = 5.996 kN, Pfy/Py = 0.267 at χ = 173.83 mm 
First HINGE Load = 7.138 kN, Pfh/Py = 0.318 at X = 173.83 mm 

P O I N T 4 of C U R V E 9 
Run 36) For RHO_sway = 1.48, RHO_non-sway = 3.33, are: 
First YIELD Load = 5.939 kN, Pfy/Py = 0.264 at χ = 178.80 mm 
First HINGE Load = 7.099 kN, Pfh/Py = 0.316 at X = 178.80 mm 

P O I N T 5 of C U R V E 1 
Run 37) For RHO_sway = 1.85, RHO_non-sway = 0.37, are: 
First YIELD Load = 5.850 kN, Pfy/Py = 0.260 at χ = 153.97 mm 
First HINGE Load = 7.008 kN, Pfh/Py = 0.312 at X = 153.97 mm 

P O I N T 5 o f C U R V E 2 
Run 38) For RHO_sway = 1.85, RHO_non-sway = 0.74, are: 
First YIELD Load = 5.840 kN, Pfy/Py = 0.260 at χ = 153.97 mm 
First HINGE Load = 7.001' kN, Pfh/Py = 0.311 at X = 153.97 mm 

P O I N T 5 o f C U R V E 3 
Run 39) For RHO_sway = 1.85, RHO_non-sway = 1.11, are: 
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First YIELD Load = 5.826 kN, Pfy/Py = 0.259 at χ = 158.93 mm 
First HINGE Load = 6.991 kN, Pfh/Py = 0.311 at X = 158.93 mm 

P O I N T 5 o f C U R V E 4 
Run 40) For RHO_sway = 1.85, RHO_non-sway = 1.48, are: 
First YIELD Load = 5.808 kN, Pfy/Py = 0.258 at χ = 158.93 mm 
First HINGE Load = 6.978 kN, Pfh/Py = 0.310 at X = 158.93 mm 

P O I N T 5 o f C U R V E 5 
Run 41) For RHO_sway = 1.85, RHO_non-sway = 1.85, are: 
First YIELD Load = 5.782 kN, Pfy/Py = 0.257 at χ = 163.90 mm 
First HINGE Load = 6.960 kN, Pfh/Py = 0.310 at X = 163.90 mm 

P O I N T 5 o f C U R V E 6 
Run 42) For RHO_sway = 1.85,'' RHO_non-sway = 2.22, are: 
First YIELD Load = 5.754 kN, Pfy/Py = 0.256 at χ = 168.87 mm 
First HINGE Load = 6.940 kN, Pfh/Py = 0.309 at X = 163.90 mm 

P O I N T 5 o f C U R V E 7 
Run 43) For RHO_sway = 1.85, RHO_non-sway = 2.59, are: 
First YIELD Load = 5.719 kN, Pfy/Py = 0.254 at χ = 168.87 mm 
First HINGE Load = 6.915 kN, Pfh/Py = 0.308 at X = 168.87 mm 

P O I N T 5 o f C U R V E 8 
Run 44) For RHO_sway = 1.85, RHO_non-sway = 2.96, are: 
First YIELD Load = 5.682 kN, Pfy/Py = 0.253 at χ = 173.83 mm 
First HINGE Load = 6.888 kN, Pfh/Py = 0.306 at X = 168.87 mm 

P O I N T 5 o f C U R V E 9 
Run 45) For RHO_sway = 1.85, RHO_non-sway = 3.33, are: 
First YIELD Load = 5.640 kN, Pfy/Py = 0.251 at χ = 173.83 mm 
First HINGE Load = 6.857 kN, Pfh/Py = 0.305 at X = 173.83 mm 

P O I N T 6 o f C U R V E 1 
Run 46) For RHO_sway = 2.22, RHO_non-sway = 0.37, are: 
First YIELD Load = 5.525 kN, Pfy/Py = 0.246 at χ = 153.97 mm 
First HINGE Load = 6.748 kN, Pfh/Py = 0.300 at X = 149.00 mm 

P O I N T 6 o f C U R V E 2 
Run 47) For RHO_sway = 2.22, RHO_non-sway = 0.74, are: 
First YIELD Load = 5.516 kN, Pfy/Py = 0.245 at χ = 153.97 mm 
First HINGE Load = 6.742 kN, Pfh/Py = 0.300 at X = 153.97 mm 

P O I N T 6 o f C U R V E 3 
Run 48) For RHO_sway = 2.22, RHO_non-sway = 1.11, are: 
First YIELD Load = 5.508 kN, Pfy/Py = 0.245 at χ = 158.93 mm 
First HINGE Load = 6.735 kN, Pfh/Py = 0.300 at X = 153.97 mm 

P O I N T 6 o f C U R V E 4 
Run 49) For RHO_sway = 2.22, RHO_non-sway = 1.48, are: 
First YIELD Load = 5.491 kN, Pfy/Py = 0.244 at χ = 158.93 mm 
First HINGE Load = 6.723 kN, Pfh/Py = 0.299 at X = 158.93 mm 

P O I N T 6 o f C U R V E 5 
Run 50) For RHO_sway = 2.22, RHO_non-sway = 1.85, are: 
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First YIELD Load = 5.475 kN, Pfy/Py = 0.244 at χ = 163.90 mm 
First HINGE Load = 6.710 kN, Pfh/Py = 0.299 at X = 158.93 mm 

P O I N T 6 o f C U R V E 6 
Run 51) For RHO_sway = 2.22, RHO_non-sway = 2.22, are: 
First YIELD Load = 5.451 kN, Pfy/Py = 0.243 at χ = 163.90 mm 
First HINGE Load = 6.693 kN, Pfh/Py = 0.298 at X = 163.90 mm 

P O I N T 6 o f C U R V E 7 
Run 52) For RHO_sway = 2.22, RHO_non-sway = 2.59, are: 
First YIELD Load = 5.427 kN, Pfy/Py = 0.241 at χ = 163.90 mm 
First HINGE Load = 6.674 kN, Pfh/Py = 0.297 at X = 163.90 mm 

P O I N T 6 o f C U R V E 8 
Run 53) For RHO_sway = 2.22, "' RHO_non-sway = 2.96, are: 
First YIELD Load = 5.396 kN, Pfy/Py = 0.240 at χ = 168.87 mm 
First HINGE Load = 6.651 kN, Pfh/Py = 0.296 at X = 168.87 mm 

P O I N T 6 o f C U R V E 9 
Run 54) For RHO_sway = 2.22, RHO_non-sway = 3.33, are: 
First YIELD Load = 5.366 kN, Pfy/Py = 0.239 at χ = 168.87 mm 
First HINGE Load = 6.627 kN, Pfh/Py = 0.295 at X = 168.87 mm 

P O I N T 7 o f C U R V E 1 
Run 55) For RHO_sway = 2.59, RHO_non-sway = 0.37, are: 
First YIELD Load = 5.238 kN, Pfy/Py = 0.233 at χ = 149.00 mm 
First HINGE Load = 6.509 kN, Pfh/Py = 0.290 at X = 149.00 mm 

P O I N T 7 o f C U R V E 2 
Run 56) For RHO_sway = 2.59, RHO_non-sway = 0.74, are: 
First YIELD Load = 5.232 kN, Pfy/Py = 0.233 at χ = 153.97 mm 
First HINGE Load = 6.504 kN, Pfh/Py = 0.289 at X = 153.97 mm 

P O I N T 7 o f C U R V E 3 
Run 57) For RHO_sway = 2.59, RHO_non-sway = 1.11, are: 
First YIELD Load = 5.225 kN, Pfy/Py = 0.232 at χ = 153.97 mm 
First HINGE Load = 6.498 kN, Pfh/Py = 0.289 at X = 153.97 mm 

P O I N T 7 o f C U R V E 4 
Run 58) For RHO_sway = 2.59, RHO_non-sway = 1.48, are: 
First YIELD Load = 5.213 kN, Pfy/Py = 0.232 at χ = 158.93 mm 
First HINGE Load = 6.489 kN, Pfh/Py = 0.289 at X = 158.93 mm 

P O I N T 7 o f C U R V E 5 
Run 59) For RHO_sway = 2.59, RHO_non-sway = 1.85, are: 
First YIELD Load = 5.199 kN, Pfy/Py = 0.231 at χ = 158.93 mm 
First HINGE Load = 6.477 kN, Pfh/Py = 0.288 at X = 158.93 mm 

P O I N T 7 o f C U R V E 6 
Run 60) For RHO_sway = 2.59, RHO_non-sway = 2.22, are: 
First YIELD Load = 5.183 kN, Pfy/Py = 0.231 at χ = 163.90 mm 
First HINGE Load = 6.465 kN, Pfh/Py = 0.288 at X = 163.90 mm 

P O I N T 7 o f C U R V E 7 
Run 61) For RHO_sway = 2.59, RHO_non-sway = 2.59, are: 
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First YIELD Load = 5.161 kN, Pfy/Py = 0.230 at χ = 163.90 mm 
First HINGE Load = 6.447 kN, Pfh/Py = 0.287 at X = 163.90 mm 

P O I N T 7 o f C U R V E 8 
Run 62) For RHO_sway = 2.59, RHO_non-sway = 2.96, are: 
First YIELD Load = 5.140 kN, Pfy/Py = 0.229 at χ = 163.90 mm 
First HINGE Load = 6.430 kN, Pfh/Py = 0.286 at X = 163.90 mm 

P O I N T 7 o f C U R V E 9 
Run 63) For RHO_sway = 2.59, RHO_non-sway = 3.33, are: 
First YIELD Load = 5.114 kN, Pfy/Py = 0.228 at χ = 168.87 mm 
First HINGE Load = 6.409 kN, Pfh/Py = 0.285 at X = 168.87 mm 

P O I N T 8 o f » C U R V E 1 
Run 64) For RHO_sway = 2.96, RHO_non-sway = 0.37, are: 
First YIELD Load = 4.984 kN, Pfy/Py = 0.222 at χ = 149.00 mm 
First HINGE Load = 6.287 kN, Pfh/Py = 0.280 at X = 149.00 mm 

P O I N T 8 o f C U R V E 2 
Run 65) For RHO_sway = 2.96, RHO_non-sway = 0.74, are: 
First YIELD Load = 4.980 kN, Pfy/Py = 0.222 at χ = 153.97 mm 
First HINGE Load = 6.283 kN, Pfh/Py = 0.280 at X = 153.97 mm 

P O I N T 8 o f C U R V E 3 
Run 66) For RHO_sway = 2.96, RHO_non-sway = 1.11, are: 
First YIELD Load = 4.973 kN, Pfy/Py = 0.221 at χ = 153.97 mm 
First HINGE Load = 6.278 kN, Pfh/Py = 0.279 at X = 153.97 mm 

P O I N T 8 o f C U R V E 4 
Run 67) For RHO_sway = 2.96, RHO_non-sway = 1.48, are: 
First YIELD Load = 4.966 kN, Pfy/Py = 0.221 at χ = 158.93 mm 
First HINGE Load = 6.272 kN, Pfh/Py = 0.279 at X = 153.97 mm 

P O I N T 8 o f C U R V E 5 
Run 68) For RHO_sway = 2.96, RHO_non-sway = 1.85, are: 
First YIELD Load = 4.953 kN, Pfy/Py = 0.220 at χ = 158.93 mm 
First HINGE Load = 6.261 kN, Pfh/Py = 0.279 at X = 158.93 mm 

P O I N T 8 o f C U R V E 6 
Run 69) For RHO_sway = 2.96, RHO_non-sway = 2.22, are: 
First YIELD Load = 4.940 kN, Pfy/Py = 0.220 at χ = 158.93 mm 
First HINGE Load = 6.250 kN, Pfh/Py = 0.278 at X = 158.93 mm 

P O I N T 8 o f C U R V E 7 
Run 70) For RHO_sway = 2.96, RHO_non-sway = 2.59, are: 
First YIELD Load = 4.924 kN, Pfy/Py = 0.219 at χ = 163.90 mm 
First HINGE Load = 6.237 kN, Pfh/Py = 0.277 at X = 163.90 mm 

P O I N T 8 o f C U R V E 8 
Run 71) For RHO_sway = 2.96, RHO_non-sway = 2.96, are: 
First YIELD Load = 4.905 kN, Pfy/Py = 0.218 at χ = 163.90 mm 
First HINGE Load = 6.221 kN, Pfh/Py = 0.277 at X = 163.90 mm 

P O I N T 8 o f C U R V E 9 
Run 72) For RHO_sway = 2.96, RHO_non-sway = 3.33, are: 
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First YIELD Load = 4.886 kN, Pfy/Py = 0.217 at χ = 163.90 mm 
First HINGE Load = 6.204 kN, Pfh/Py = 0.276 at X = 163.90 mm 

P O I N T 9 of C U R V E 1 
Run 73) For RHO_sway = 3.33, RHO_non-sway = 0.37, are: 
First YIELD Load = 4.757 kN, Pfy/Py = 0.212 at χ = 149.00 mm 
First HINGE Load = 6.081 kN, Pfh/Py = 0.271 at X = 149.00 mm 

P O I N T 9 of C U R V E 2 
Run 74) For RHO_sway = 3.33, , RHO_non-sway = 0.74, are: 
First YIELD Load = 4.753 kN, Pfy/Py = 0.211 at χ = 153.97 mm 
First HINGE Load = 6.079 kN, Pfh/Py = 0.270 at X = 153.97 mm 

P O I N T 9 o f χ C U R V E 3 
Run 75) For RHO_sway = 3.33,' RHO_non-sway = 1.11, are: 
First YIELD Load = 4.747 kN, Pfy/Py = 0.211 at χ = 153.97 mm 
First HINGE Load = 6.073 kN, Pfh/Py = 0.270 at X = 153.97 mm 

P O I N T 9 of C U R V E 4 
Run 76) For RHO_sway = 3.33, RHO_non-sway = 1.48, are: 
First YIELD Load = 4.742 kN, Pfy/Py = 0.211 at χ = 153.97 mm 
First HINGE Load = 6.068 kN, Pfh/Py = 0.270 at X = 153.97 mm 

P O I N T 9 of C U R V E 5 
Run 77) For RHO_sway = 3.33, RHO_non-sway = 1.85, are: 
First YIELD Load = 4.732 kN, Pfy/Py = 0.211 at χ = 158.93 mm 
First HINGE Load = 6.060 kN, Pfh/Py = 0.270 at X = 158.93 mm 

P O I N T 9 of C U R V E 6 
Run 78) For RHO_sway = 3.33, RHO_non-sway = 2.22, are: 
First YIELD Load = 4.720 kN, Pfy/Py = 0.210 at χ = 158.93 mm 
First HINGE Load = 6.050 kN, Pfh/Py = 0.269 at X = 158.93 mm 

P O I N T 9 o f C U R V E 7 
Run 79) For RHO_sway = 3.33, RHO_non-sway = 2.59, are: 
First YIELD Load = 4.708 kN, Pfy/Py = 0.209 at χ = 158.93 mm 
First HINGE Load = 6.039 kN, Pfh/Py = 0.269 at X = 158.93 mm 

P O I N T 9 of C U R V E 8 
Run 80) For RHO_sway = 3.33, RHO_non-sway = 2.96, are: 
First YIELD Load = 4.693 kN, Pfy/Py = 0.209 at χ = 163.90 mm 
First HINGE Load = 6.027 kN, Pfh/Py = 0.268 at X = 163.90 mm 

P O I N T 9 o f C U R V E 9 
Run 81) For RHO_sway = 3.33, RHO_non-sway = 3.33, are: 
First YIELD Load = 4.676 kN, Pfy/Py = 0.208 at χ = 163.90 mm 
First HINGE Load = 6.011 kN, Pfh/Py = 0.267 at X = 163.90 mm 



Chapter 6 

Experimental Developments 

6.1 Review of Previous Experimental Work 

Experimental work into buckling of simply supported columns started more 

than three hundred years ago. The first experiments were carried out in 1729 by Van 

Musschenbroeck, where he concluded that the strength of a long strut relates 

inversely to the square of its length. In 1759, Euler's Theory was developed; the 

experimental work that followed indicated that there were discrepancies between 

experimental results and his theory resulting in the abandonment of his theoretical 

developments for a period of time. These discrepancies prompted the creation of 

many empirical formulae, derived to provide lower limits to the scatter band of 

available experimental results. As described in chapter 2, it was Young, in 1807, 

who established a theoretical limit at which struts would crush rather than buckle. 

The contribution of the subsequent experimental work of Navier and Lamarle 

confirmed the application of Euler's theory to slender columns. Many other 

investigators presented empirical formulae in order to justify their own or other 

researchers' experimental work. In 1921, Salmon50, wrote a very good review of 

the experimental work on column buckling. 

However, the method of assessing the failure load of a column in a consistent 

way, that enjoys full respect even today, was introduced by Ayrton and Perry in 

1886. They examined the validity of their analysis by comparing their theoretical 

predictions with results obtained from experiments conducted by Hodginson5 a few 

decades before. It was the first time that a theory had been independently verified 

by experimental work done before. 

In 1912, the elastician Southwell introduced a new method for interpreting 

the experimental results. His technique was developed on a similar but more general 
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basis than the one used by Ayrton and Perry. The work done by Southwell is still 

considered, as establishing the only convenient and consistent method for assessing 

the probable magnitude of imperfections present in the column. Unfortunately, his 

contribution seems to have been ignored by the vast majority of investigators 

undertaking experimental work on column buckling. As a result, the majority of past 

test results have failed to investigate the level of geometric and loading 

imperfections present in the test models with the consequence that much design is 

still based on empirical fits. Even in BS 595£), the inference of the imperfection level 

to ensure that the Ayrton and Perry formula provides the best fit curve for the scatter 

band of experimental results, was obtained empirically. 

A recent experimental programme investigating the dependence of buckling 

upon the level of imperfections in columns was carried out at UCL51 in 1992. In 

this programme, the column, from the instability point of view, was idealised as a 

member presenting only one degree-of-freedom, i.e. the column was examined either 

alone, or as a part of a braced frame. This situation, however, is not close to reality, 

where the majority of the axially loaded members (columns), considered either alone 

or as part of a frame, exhibit more than one - usually two - modes of buckling. The 

second mode of buckling may arise from the member showing an instability in 

another direction, or is a part of a frame which is not prevented from sidesway. 

To extend the previous experimental programme to the case where buckling 

may involve more than one active buckling modes, a new series of experiments has 

been undertaken on the limited frame introduced in Chapter 3. The following 

sections describe the numerical experiments undertaken to choose a range of frame 

geometries to test the robustness of the theoretical model of Chapter 5. 

6.2 The Objective of the Experiments 

The present experimental work aims to examine the buckling behaviour of 

a beam-column, considered as a part of a frame which has the possibility of 
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sidesway. There are, therefore, two potentially critical modes of instability that have 

to be considered in the assessment of buckling for this system: the instability of the 

column as an independent member, and the instability arising from the sway 

possibility of the frame. 

The main purpose of the present experimental work is to measure the total 

imperfections associated with the lowest sway and non-sway buckling modes. Of 

special interest is the case when the lowest two critical loads are close to each other. 
IT 

In these circumstances an interaction of the two modes is expected to take place, 

accompanied with a possible reduction of the ultimate capacity of the beam-column. 

The Southwell Plot will be used as a tool, through which, the total 

imperfection, and a check on the critical load for each mode will be provided. These 

critical loads will then be compared with the corresponding loads obtained through 

theory (Eigenvalue problem). Having obtained the total imperfection for each mode, 

the theoretical load required to produce first yield and first hinge are calculated and 

compared with the buckling load obtained from the experiment. This part of work 

will assess the proposition that, provided the total imperfection is precisely known, 

the Generalized Ayrton and Perry formula can accurately predict the maximum load 

carrying capacity of the column. Another objective of the present experimental work 

is to illustrate how misleading the theoretical results can be if the imperfection 

effects are not taken into account. 

Since the column is under a combination of axial load and bending moment, 

both the geometric and loading imperfections influence the load carrying capacity 

of the structure. The geometric imperfection is a random imperfection and its 

magnitude varies with different specimens. The loading imperfections, as developed 

in Chapter 4, depend on the loading pattern and the applied loads, and can be 

controlled to provide a wide variety of total imperfections. Based on the measured 

total imperfection obtained through the Southwell Plot, the theoretically calculated 

failure loads may then be compared with the experimentally observed collapse loads. 
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6.3 Numerical Experiments 

The above procedure comprised initially a theoretical analysis as developed 

in chapter 3. Then, before starting any experimental work, a computer program was 

written in FORTRAN-77 which could carry out a critical load (Eigenvalue) analysis 

of a column considered as part of a frame which had the possibility of side-sway. 

This program also carried out a non-linear elastic and elasto-plastic analysis. Its use 

enabled various parametric studies to be undertaken, i.e. on the changes in PCN, Pcs , 

for corresponding changes in the stiffness of the beams and columns of the frame, 

allowing for the final design of the test rig. Typical graphs of this study are shown 

in Appendix D. 

Fig. 6-1 depicts the changes on the first sway and non-sway critical loads 

against the beam to central column second moment of area ratio, for a certain frame 

geometry. In all cases of geometries, an increase of the beam-stiffness only, had 

generally an incremental effect on the critical loads of the central column, which 

loads might be significantly different. When, however, this increase was combined 

with an increase of the stiffness of the side-columns, the difference between the first 

two (larger) values of critical loads was decreased, until at some stage it was 

negligible. 

It is curious that if the geometry of the frame is kept constant, retaining 

I3/I1>1.5, for low stiffness of the beams, the first critical load, associated with the 

sway mode, is always less than the lowest critical load, associated with the non-

sway. As the stiffness of the beams is increased, a point can be reached, where the 

first critical loads associated with sway and non-sway are equal. Further increase of 

the stiffness of the beams results in the sway critical load becoming greater than that 

of the non-sway mode. Apart from this pattern, expressed in Fig. 6-1, analogous 

patterns can be seen in the figures of the Appendix D, where the beams' stiffness, 

l2fi\, is kept constant but that of the outer columns, l3/li, changes. 

In conclusion: 
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Figure 6-1 

1) For low values of beam stiffness (I2/Ij < about 1), changes in outer column 

stiffness do not result in an intersection of the P c s and PC N curves. 

2) For higher values of beam stiffness (IJ/IJ > say 2.26), a cross-over of the 

curves occurs. 

The above parametric studies show that an experimental programme, with 

1 <, Ι^ΙΙγ " 1-ίΙΙχ ζ 3.5 , would provide a means of testing the range of behaviours, 

when the buckling case is: 

i) Uncoupled sway (zone 1), where PCS/PCN < 1, 

ii) Coupled sway and non-sway (zone 2), where PCS/PCN - 1, and 

iii) Uncoupled non-sway (zone 3), where PCS/PCN > 1 · 

All the above zones are to be investigated through a variety of frame 

geometries, coming from different lengths and cross section sizes for beams and 

columns. The variety of cross sections, once they have a standard breadth of 13 mm, 
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will be dictated from the available in the market three different thicknesses, i.e. 3, 

5 and 6 mm. 

6.4 The Southwell Plot 

The relationship between the total deflection, obtained in the elastic region 

from the original, absolutely straight position of the column, in terms of the 

geometric and loading imperfections in a general loading system, is given as 

i=l * d -r 1=1 rci~^ 

where w°, w" and wf are respectively the ith amplitudes of the geometric, non-

proportional and proportional loading imperfections. If δ is a deflection, obtained as 

a difference between: 

i) the above total deflection w\x), and 

ii) the initial imperfection, i.e. 

a) geometric, w°(x), and/or 

b) loading, wn(x), (non-proportional) 

which is independent from the axial load, then δ becomes 

eoo = f)-^w*) (6-1} 

where ξ. = wf+wf+w" 

is the amplitude of the total equivalent imperfection termed as modal equivalent 

imperfection. 
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This equation is applied to a beam-column having any kind of imperfections. 

In the experiments that have been carried out, the beams were always loaded non-

proportionally; therefore wf= 0, and Eq. (6.1) becomes 

*(*) = E-^(^W>i<*)· ( 6 · 2 ) 

At the top of the column, all the imperfections are associated with the lowest 

sway mode (symmetric about the column centre), whilst, at the middle of the column 

they are dominated by the lowest non-sway mode (symmetric with respect to an axis 

perpendicular to the mid column). Due to the fact that the contributions of higher 

order modes (sway or non-sway) to the deflected shape of the beam-column are 

negligible, Eq. (6.2), for the first sway and non-sway modes, becomes respectively 

δ, Ρ 
ôw = - + — — ξ„ (6.4) 

m 2 Ρ Ρ 

where ξ and ξ are respectively the total equivalent imperfections associated with 

the first sway and non-sway modes. 

If Eqs. (6.3) and (6.4) are plotted in a form of δ/Ρ versus δ, the resulting 

graph will be a straight line. This is the type of graph known as a Southwell Plot. 

The gradient of this line is the elastic critical load, whereas its intercept with the 

abscissa is the total equivalent imperfection that corresponds to the buckling mode 

under consideration. 

Therefore, in order to experimentally assess the imperfections associated with 

the first sway and non-sway modes, the axial load, along with the corresponding 

deflections at both the top and the middle of the column, are the only necessary and 
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sufficient elements of data. 

6.5 First-stage Experimental Equipment and Instrumentation 

At the first stage of the above procedure the geometry of the members of the 

frame along with their material properties was'determined. A solid rectangular cross-

section of mild steel was used for all members. This type of cross-section, compared 

with other sections had a high shape-factor of S/Z=1.5 and therefore an extended 

elastic-plastic behaviour was expected. All the members had nominal dimensions of 

breadth b = 0.5 inch and depth d = 1 inch. The beam lengths were 500 mm. The 

length of the columns L could be varied from 302 mm to 702 mm with an 

approximate increment of 100 mm giving five different column lengths. Figs. A. 1.1 

to A. 1.3 in Appendix A, show the geometry and a bending test made to determine 

the material properties at this stage. 

The rig used to test this limited frame, shown in Photo 1 of Appendix F, is 

available in the Departmental laboratories at University College London. It was 

designed to test both isolated columns and limited frames up to a maximum load of 

100 kN, through a jack incorporated at the bottom of the beam. A manufactured 

N.C.B./M.R.E. load cell, shown in Photo 2 on the top of the jack, is connected to 

a digital strain gauge monitor, to measure the axial load. Before starting the tests the 

load cell was calibrated to make sure there is a linear response in the loading range. 

A trolley, shown in Photo 3, was designed to accommodate the top joint of 

the central column along with its horizontal beams of the frame, which were 

clamped to the column. The trolley had to move freely horizontally, through four 

special ball-bearings as shown in Photo 4. Four end-blocks, shown in Photo 7, were 

also specially designed to clamp the ends of the four beams with the corresponding 

ends of the side columns; the left and right bottom of them had a special base with 

a ball-bearing to enable rotation ät the support point the frame. Two other blocks 

(top and bottom centre) were each used to connect the two beams together with the 
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central column. The six end-blocks resulted in the whole frame to behave as a 

monolithic construction. Finally a pulley mechanism, shown in Photo 7, was used 

for the application of horizontal load, through weights. 

6.5.1 First stage Experimental Results 

When the frame was under loading without axial load, its horizontal 

displacement was in excellent agreement With what was earlier calculated. 

However, when an axial load Ρ (either proportional to or independent of the 

horizontal load) was applied, as shown in Photo 8, the horizontal displacement of 

the frame ceased to follow the theoretical values. The greater the axial load that was 

applied, the larger was the discrepancy from the calculated values. Sometimes, at an 

interim stage of the experiment, while the proportional increment of Ρ and Η was 

normal, some unexplained jumps of displacement (see graph A.2.9 in Appendix A) 

were observed. 

This phenomenon, being repeated for a series of experiments, led to the 

conclusion that: 

(i) During the application of the axial load, an excessive rolling friction 

was developed in the ball-bearings. 

(ii) Due to the high levels of axial load applied in earlier experiments 

taken up to failure, the tangent points of the circular surface of the rollers (cylinders) 

of the trolley created surface irregularities (ridges) on the flat bearing surface 

producing discontinuous performance of the roller bearings (see typical Photo 4). 

An attempt was made to smooth these ridges and improve the conditions of 

the roller-bearings. However, although a substantial improvement had been effected 

on both the friction and the ridges, the problem still existed. A new series of tests 

followed where some minor jumps of deflection appeared. The friction, being always 

present, continued to constrain the deflections. Again, some minor ridges were 
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observed on the flat bars (rails). 

This time the old surface of the bars was replaced with specially hardened 

pieces of steel. This, it was believed, would eliminate all the former imperfections 

of the trolley. Unfortunately it only needed a small number of tests to realise that 

even this, the best and probably last of all possible improvements, was not able to 

eliminate friction, despite the minimization of the ridging effect. 

The idea of substituting the displacement controlled trolley for a force control 

using weights seemed eventually to be a reasonable method for eliminating the 

friction, although the applied axial load could not be as high as that obtained through 

the hydraulic jack. 

To allow failure conditions to be produced, a smaller cross section of 13x3 

mm was adopted. With this cross section the second moment of area is at least 100 

times smaller than the second moment of area of the previous section (25x12 mm) 

with corresponding reductions in buckling loads. A new rig to accommodate a frame 

of these small-section-members was then carefully designed and constructed. 

6.6 Geometry of the new Frame-model 

In the experiments, for all the members of the idealized limited frame, a solid 

'rounded' rectangular cross section was used. Compared with other cross-sections, 

this type has a higher shape-factor (S/Z = 1.62), therefore an extended elasto-plastic 

behaviour is expected. The members, taken from what was available in the market, 

had three nominal dimensions, i.e. a standard breadth of 13 mm, coupled with 

thicknesses of 3, 5 and 6 mm. Due to the non-pure-rectangular type of cross section, 

a special subroutine was incorporated in the main computer program to calculate 

cross-section properties (area, second moment of area, section modulus), required in 

the procedure of theoretical analysis. 

The lengths of beams and columns were generally different for each test. As 
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a result of this, different slenderness ratios and various relative rigidities at the end-

blocks of the column had to be taken into account. For each test, the frame geometry 

and the pattern of loading were selected to cover a certain range of the failure to 

squash load ratio as well as a certain range of PcS/PcN ratio, according to what was 

discussed in Section 6.3. This geometry was usually shown in a sub-figure which 

was incorporated in the main graph, were a certain information was given. 
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6.7 Material Properties 

All the material used for the frame model in this experimental work was 

commercially available mild steel. Although it comprised three different cross 

sections which might have been chosen from different batches, each one of the test 

specimens was assumed to have effectively the same material properties. 

The mean Young's modulus was calculated from three specimens, where 

three different types of experiments (tension, bending and cantilever) were carried 
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out, and was found to be 195 kN/mm2, with a variation from the mean ±1.9% ; the 

corresponding mean yield stress was 360 N/mm2 with a variation from the mean 

±1.7%. Figs. 6-2 to 6-4 show the corresponding graphs obtained from the results 

of the experiments conducted to define the material properties. 

6.8 Experimental Environment for the new Frame 

The main test-rig used for the new frame remained the same. However, in the 

new architecture, where the jack had to be removed, a stiff horizontal beam, the 

central part of which was supported and consequently would produce negligible 

deflection, had to accommodate the central, pinned support of the frame. A general 

arrangement of the test-rig is shown in Fig. 6-5. 

Fig. 6-6 depicts a more detailed configuration of the overall frame, where a 

proper set of end-blocks was used to connect beams and columns. Details of these 
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end-blocks are given in the next section. 

Initially the test rig was designed to accommodate the rounded 3x13 mm 

section. For relatively slender columns of this section a failure could be possible, for 

axial load less than 120 kg, which was the maximum applicable weight load. Later 

on, however, it was ascertained that a larger amount of axial load needed to be 

applied on the column, so that a state of failure, even for less slender or almost 

perfect columns, should always be feasible. For this reason the load application 

system was changed. As shown in Fig. 6-8 and discussed in the next paragraph, the 

axial load was applied by a wheel nut through a gantry and a load-cell was specially 

designed and constructed, to accommodate and accurately measure axial loads up 

to 8 kN. It was machined from mild steel in a U-shape, as shown in Fig. 6-7. Foil 

strain gauges52 were placed inside and outside its arms, which were connected in 

series on a measuring circuit. This circuit, consisting of a power supply and a bridge 

balance, provided, through a voltameter, a digital reading of the current axial load. 

A calibration of this load cell gave a sufficiently linear response, with a sensitivity 
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of ±0.01 kN over the range 0-8 kN. 

The application of axial load was the next problem to be solved. The load 
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should be applied through a gantry, the upper end of which had a knife-edge resting 

on the upper end of the column. After discarding weights, a way had to be found, 

so that the gantry could always be kept vertical. This implied that the original point 

of application of axial load (lower end of gantry), which replaced the weights, had 

to always follow any possible horizontal movement of the top-knife-edge of the 

column. 

Here, it has to be noted that the slightest horizontal movement of the original 

point of application of the axial load with respect to the top-knife-edge resulted in 

the development of a small horizontal component, which in turn affected both the 

horizontal deflections of the column (at top and mid-height). This would have the 
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effect of producing uncertain experimental conditions. 

For this reason, the trolley mechanism, previously used at the first 

experimental stage, was modified, to allow the bottom of loading gantry to be 

adjusted to keep the gantry in the vertical position. 

Fig. 6-8 shows the trolley mechanism. On this mechanism a special wheel-nut 

is fixed (left side of figure), so that at each experimental stage it can always 

accurately follow the horizontal movement of the column-top. 
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Figure 6-7 

To enable the presence of sway loading imperfections at the top of the 

column, a pulley system, shown in Fig. 6-5, was used. This system could be put at 

either side of the rig, so that the horizontal deflection at the top of the column could 

be directed either to the right or to the left. For non-sway loading imperfections, two 

hangers were attached through gantries on the mid-span of the upper-left and lower-

right beam. In all the experiments the weights used for non-sway imperfections were 
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the same for each beam, so that the maximum deflection would always occur at the 

mid-height of the column. 

Figure 6-8 

The lateral deflections of the column (at top and mid-height) were always 

measured through dial gauges. Their magnetic bases were attached to the fixed, stiff 

plate, of the rig. 

6.9 The Set-up of Limited-frames 

One of the major problems in performing the experiments was to enable easy 

replacement of the failed column members and yet ensure a rigid joint connection 

between beams and columns, so that the whole frame could have a monolithic 

response. 

Figs. 6-9 and 6-10 show in detail two kinds of end-blocks (connectors) used 

to carry out the above task. Basically, each connection was designed to meet the 
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following requirements: firstly it should not have any weak point in it, nor should 

it create any similar point in the column or beam(s); secondly it should be rigid 
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enough to transfer without significant distortion any cross section force arising from 

statics; thirdly it should be easily assembled. 

The corner end-block, shown in Fig. 6-9, provided a connection between a 

beam and a side column. All three pieces were of high strength steel, using bolts of 

similar material. To enable a rolling support for the two lower corners of the frame, 

a special cylindrical axis was turned at both sides, perpendicular to the frame plane. 

This axis is then accommodated in the holes of a corresponding pair of plates, 
\ 

strongly connected to the horizontal rig support beam. 

Fig. 6-10 shows an end-block connecting two beams to the central column. 

It consists of two pairs of high-strength steel-plates which grip the two ends of the 

beams. Then, the upper plates, which are thicker, grip the end of the column, 

through two large bolts. Finally, on the top of these two thick plates, was placed a 

top plate with a V-notch. This was in contact with the knife-edge, and thus provided 

a free rotation of the joint in the plane of the frame. The dimensions of plates and 

bolts were designed to sustain the forces arising from the loading of the frame and 

the pre-tension of the bolts. 

To ensure adequate clamping and alignment of both the beams and the 

column, the upper (thick) plates were manufactured so that a strip of material, of 

1x13 mm cross-section, was removed across the middle of their two perpendicular 

sides. This 'cut off material is shown in Fig. 6-10 as a less shaded area. 

A spatial view of this end-block is also shown in Fig. 6-11, where some of 

the above details can be more easily understood. 

6.10 The Test Procedure 

Before starting the test procedure, a preliminary numerical experiment was 

always performed through the computer program. In this procedure a properly 

chosen combination of data on cross-section sizes and lengths of beams and columns 
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Figure 6-11 

was given, so that, taking into account a known amount of imperfection(s) for one 

only or both buckling modes, the resulting behaviour should be at expected levels. 

These levels might be the restrictions arising from section 6.3, ensuring that the first 

two critical loads should be close to each other, while the buckling load, or the load 

necessary to form the first plastic hinge, or at least the first yield load, should not 

be more than 8 kN, which was the maximum tension capacity for the load cell 

measuring the axial load. 

Having a whole picture of the experimental data along with the expected 

results from theory, the appropriate cross sections and lengths for beams and 

columns were first accurately cut and then carefully assembled. The stage of 

assembling was very important because all the members of the frame had to be 

correctly aligned before the bolts were tightened. This means the frame had to keep 

all its members in plane and have them straight with right angles between them; 

otherwise, apart from any frame-imperfections, there could be initial stresses locked 
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in the members which could affect the final results. 

The whole frame was then put on the rig having 1) its bottom V-shaped plate 

rested on the knife-edge which was fixed on the horizontal beam and 2) its lower 

side end-blocks coupled into the corresponding holes of the supporting plates. The 

main task at this stage was to ensure a vertical position of the frame with its lower 

side end-blocks free to rotate and move horizontally, but not vertically. 

The knife-edge of the upper gantry, used for application of the axial load, 

was next placed on the upper V-shaped plate of the column. Then the gantry was 

connected, through the load cell, with the corresponding gantry starting from the 

wheel-nut on the trolley mechanism. At this stage, the verticality of the upper gantry 

was checked with scrupulous care, through a plumb-line, to ensure absence of any 

horizontal component of axial load. 

In order to get a first, rough idea of any initial geometric imperfection of the 

central column the following measurements were processed: 

1) For the non-sway mode, the maximum deformation, existing in the middle 

of the length, was measured through a device with a dial gauge, made for this 

purpose and shown in Fig. 6-12. 

2) For the sway mode, the horizontal distance between the gantry's knife-

edge and the plumb-line was also taken through a dial gage. 

To enable the measuring of horizontal deflections on both the top and mid-

height of the central column, two dial gauges were placed on the stiff plate of the 

test rig. One more dial gauge was placed down on the trolley mechanism to measure 

its required horizontal movement, to follow the corresponding top deflection. 

In order to produce loading imperfections on the central column: 

1) For the non-sway mode, two gantries were suspended, with their knife-

edge on the middle of the upper-left and lower-right beam respectively. The same 

weight was placed on each hanger, so that the rotations, produced on the ends of the 
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column, were equal, thus giving the column a symmetric deformed shape with the 

maximum deflection at the middle. This deflection was then measured and added to 

the corresponding geometric imperfection, to give the total non-sway loading 

imperfection. 

2) For the sway mode, the pulley mechanism was placed at an appropriate 

height on the required side of the test rig. Through a wire connecting the top of the 

frame with the hanger, an appropriate level of weights could produce a horizontal 

deflection on the top. This deflection was added to the corresponding geometric (out 

of plumb-line) to give the total sway loading imperfection. 

Setting up the test rig, was the most important part of the experiment and 

took much more time than that required for testing. 

Having applied and measured the total loading imperfections, the axial load 

was applied through the wheel-nut on the lower trolley mechanism. The value of 
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axial load could be directly read on the screen of the strain-gauge-bridge-box, to 

which the load cell was connected. When the load level reached the intended value, 

readings were taken of the dial gauges for both the top and mid-height deflections 

of the column. At the same time, any horizontal deflection at the top of the column 

was compensated by adjusting the position of the trolley mechanism. 

This loading procedure was continued until collapse. Collapse was confirmed 

when an attempt to increase load would lead to a drop in axial load, accompanied 
ij 

by large increases of deformations. These experimental results, consisting of the 

axial load and the corresponding deflections on the top and mid-height of column, 

were then properly processed to give the Southwell Plot for both modes. 

On each specimen at least three tests were carried out. After each test the 

frame was unloaded, and then loaded again, so that a new set of experimental results 

was obtained. The purpose of re-testing was to allow the effects of different total 

equivalent imperfections on the buckling collapse load to be assessed. In these re-

tests, a great part of total imperfections was attributed to geometric imperfections 

created by the permanent distortions from the previous tests. 

6.11 Theoretical and Experimental Errors 

The possible errors involved in both the theoretical calculations and 

experimental observations are discussed in this section. 

6.11.1 Theoretical Errors 

The main errors involved in the theoretical analysis are due to the assumption 

that the contribution of the higher sway and/or non-sway critical modes to the 

imperfections as well as to their subsequent effects on the non-linear part of the 

deflection are negligible. 

For the loading imperfections it was shown theoretically in Section 4.8 that 
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the amplitude factors of the higher modes can be negligible compared with the 

corresponding associated with the first two modes. These higher modes have even 

smaller contribution to the non-linear part of either the deflection or bending 

moment. 

Although the main theoretical errors are due to the elimination of the higher 

mode contributions, they are still negligible. 

6.11.2 Experimental Errors 

There are various factors that can affect the experimental results. The main 

errors encountered in the experimental procedure may be due to the: 

1) experimental assessment of the material properties, 

2) measurement of both sides of the specimen's cross section along with the 

overall frame geometry and the effective length of the column, 

3) support and joint conditions, 

4) set-up procedure and 

5) reading accuracy. 

Many of the effects of the above errors have been discussed in Chapter 6. 

Here a summary will be presented, highlighting the factors that influence the 

Southwell Plot. 

Although the material properties were obtained through a carefully set up 

experimentation, there might be a minor reasonable deviation from their real values. 

The dimensions and every cross sectional detail (radii of their curved angles) 

et.c. of the members were measured with an accuracy of ±0.05 mm whereas their 

lengths were measured up to ±1 mm accuracy. The above two types of errors do not 

actually affect the shape of the Southwell Plot but they might cause a discrepancy 

between the elastic critical loads obtained theoretically and experimentally. This 
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discrepancy may be significant if the length of the column between the two joints 

is not properly measured. 

The theoretical model of the limited frame, as far as the boundary and joint 

conditions are concerned, seemed to give a good agreement between the theoretically 

calculated elastic critical loads and those obtained experimentally. The observed 

discrepancy was less than 5%. In two only cases on the sway mode this discrepancy 

was found to be 12% and 13%. This may be ascribed either to the inadequate 

horizontal movement of the trolley mechanism during the loading stages or to the 

lack of verticality of the applied axial load, causing development of a small 

horizontal component, which in turn affects the horizontal deflections of the column. 

Consequently the sway mode of the Southwell Plot, taking into account these 

deflections, might give points which deviate from the straight line. The regression 

line which in turn is obtained from these points, has a different slope from what it 

ought to have. 

The set-up procedure has a different influence on the experimental points in 

the Southwell Plot. It is not easy to assess the likely effects of a misalignment when 

setting-up the frame model in the test rig. As discussed in Chapter 6 an incorrect 

setting of the model creates wrong values of displacement and load. This type of 

error significantly influences the experimental points in the Southwell Plot, 

especially at the earlier stages of loading. 

Finally the reading accuracy of the applied load and the corresponding 

deflections play an important role on the location of the Southwell Plot points in 

particular at the early stages where the deflections are very small and therefore very 

sensitive in errors. 



Chapter 7 

Test Procedure and Comparisons 

between Experiments and Theory 

7.1 Processing the Expérimenta) Results 

In this section typical experimental results are presented. Table 7_1 depicts 

the experimental data obtained from a certain test along with the results that are 

necessary to make the Southwell Plot for both modes. 

The first three columns show the axial load levels and the corresponding dial 

gauge readings for deflections at both the top and mid-height of the column; these 

are the results obtained during the test. These data are enough to give the load 

versus deflections graph, shown in Fig. 7-1. 

The fourth and fifth columns provide the derived results required for the 

Southwell Plot of the sway-mode shown in Fig. 7-2. Similarly, the sixth and seventh 

columns provide the necessary information for making the non-sway-mode 

Southwell Plot shown in Fig. 7-3. The sixth column shows the horizontal deflection 

in mm, at mid-height of the column, that exclusively corresponds to the non-sway-

mode. Here it has to be noted, that the deflection, measured at mid-height of the 

column, is the algebraic sum of the following two deflections: 

1) The whole non-sway deflection, attributed to the symmetric buckling-

mode, and 

2) Half the sway deflection, attributed to the antisymmetric buckling-mode. 

This deflection is to be added or subtracted, according to the given sway direction. 

The seventh column, like the fifth, gives the ratio of the non-sway deflection 

divided by the corresponding axial load and allows the Southwell Plot of Fig. 7-3 
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Table 7_l T e s t : 16M1 

Exper imenta l D a t a 

Load 

Ρ 

kN 

0 

0.5 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 

2.6 

2.8 

3 

3.2 

3.4 

3.6 

3.8 

4 

4.22 

4.4 

4.6 

4.8 

5 

5.2 

5.4 

5.6 

5.8 

6 

6.2 

6.4 

6.6 

Top-defl 

dial 

gauge 

readings 

1621 

1630 

1636.5 

1643 

1649 

1656 

1661 

1667 

1673 

1680 

1686 

1695 

1703 

1714 

1726 

1736 

1750 

1766 

1782.5 

1794 

1818 

1844 

1870 

1899 

1934 

1968 

2022 

2077 

2164 

2243 

2370 

Mid-defl 

dial 

gauge 

readings 

1263 

1264 

1266 

1266 

1266 

1266 

1266 

1266 

1266 

1266 

1266 

1266 

1266 

1266 

1264 

1264 

1264 

1261.5 

1261 

1261 

1257 

1254 

1252 

1249 

1246 

1242 

1234 

1227 

1212 

1205 

1185 

S o u t h w e l l P l o t 

S w a y M o d e 

100 

m m 

0.000 

0.090 

0.155 

0.220 

0.280 

0.350 

0.400 

0.460 

0.520 

0.590 

0.650 

0.740 

0.820 

0.930 

1.050 

1.150 

1.290 

1.450 

1.615 

1.730 

1.970 

2.230 

2.490 

2.780 

3.130 

3.470 

4.010 

4.560 

5.430 

6.220 

7.490 

^ 

100P 

mm/kN 

0.000 

0.180 

0.155 

0.183 

0.200 

0.219 

0.222 

0.230 

0.236 

0.246 

0.250 

0.264 

0.273 

0.291 

0.309 

0.319 

0.339 

0.363 

0.383 

0.393 

0.428 

0.465 

0.498 

0.535 

0.580 

0.620 

0.691 

0.760 

0.876 

0.972 

1.135 

Non-Sway M o d e 

100 

m m 

0.000 

0.055 

0.108 

0.140 

0.170 

0.205 

0.230 

0.260 

0.290 

0.325 

0.355 

0.400 

0.440 

0.495 

0.535 

0.585 

0.655 

0.710 

0.788 

0.845 

0.925 

1.025 

1.135 

1.250 

1.395 

1.525 

1.715 

1.920 

2.205 

2.530 

2.965 

δ - δ 7 2 
m ν 

ÎOOP 

mm/kN 

0.000 

0.110 

0.108 

0.117 

0.121 

0.128 

0.128 

0.130 

0.132 

0.135 

0.137 

0.143 

0.147 

0.155 

0.157 

0.163 

0.172 

0.178 

0.187 

0.192 

0.201 

0.214 

0.227 

0.240 

0.258 

0.272 

0.296 

0.320 

0.356 

0.395 

0.449 
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Load vs. deflection at top & middle 
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Figure 7-1 

to be produced. 

As discussed at the beginning of section 6.4, Southwell Plot is applicable 

over the elastic region. Therefore, when the best-fit line is to be drawn, any points 

of the graph corresponding to the elastic-plastic behaviour of the column need to be 

excluded. The same usually applies for a small number of points recorded at the 

early stage of loading, since these points are very sensitive to experimental error. 

The procedure developed for the processing of the experimental results is 

continued in Figs. 7-4 and 7-5 which show the buckling shape and the bending 

moment contribution along the column for the first four critical modes (two sway 

and two non-sway) at the first yield. In the graph of Fig. 7-6 the change in the non­

linear maximum bending moment, (occurring at any cross section along the column), 

against the applied axial load is again shown for the contributions from the first four 

buckling modes. 
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Bending Moment contribution at first yield 
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Elasto-Plastic Path 
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Figure 7-6 

The experimental interpretation is finally completed with a brief summary of 

the theoretical results. This summary consists mainly of two parts. The first part 

comprises the necessary data given for this particular test. These data are initially 

the number of different property sets (members) along with the applied imperfections 

of both modes, experimentally found through Southwell plot. Then, for each 

member, shown are respectively its given geometry, i.e. length, thickness and 

breadth in mm, its calculated cross sectional properties, i.e. area in mm2, second 

moment of area in mm4, elastic and plastic section modulus in mm3 and finally its 

given material property, i.e. yield stress in N/ram2. The second part comprises the 

calculated results from the above data, starting from the three frame stiffnesses, i.e. 

rotational symmetric for the non-sway mode, rotational antisymmetric and 

translational for the sway mode, as discussed in Appendix B. Following is the 

Eigenvalue analysis as discussed in Appendix G, where, for each one of the 

demanded solutions (buckling modes), calculated and given are respectively: 
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1) the root kL of the determinant of the coefficient matrix of Eq. (3.26) 

2) the modal critical load in kN and 

3) the coefficients CL, C2, δ, and ΘΑ of the column matrix of Eq. (3.26) along 

with the mode-type (sway or non-sway). 

Finally, for the given amount of imperfections, the load level to cause initiation of 

yielding and full plasticity are calculated and given along with the squash load. 

S U M M A R Y O F T H E O R E T I C A L R E S U L T S 

PROP_sets = 3, SWAY_imp = -1.30 mm, NON-SWAY_imp = 0.80 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl σν N/mm2 

1 298.0 5.0 

2 286.0 6.0 

3 292.0 6.0 

13.0 62.44 125.70 50.28 

13.0 73.44 209.00 69.67 

13.0 73.44 209.00 69.67 

81.45 360 

117.71 360 

117.71 360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 1398.21 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1706.41 kN*mm/rad 

Translational (Sway) Stiffness of frame : 27.93 N/mm 

Solut 

E I G E N V A L U E S & E I G E N V E C T O R S 

kL Pc Cl C2 delta theta_A Mode-type 

1 

2 

3 

4 

5.642 

5.736 

8.866 

11.386 

8.7871 

9.0802 

21.6964 

35.7838 

1.00 -0.332 0.000 0.006 

1.00 3.560 -24.004 -0.005 

1.00 -0.287 -3.245 -0.013 

1.00 -0.670 0.000 0.026 

First YIELD Load = 5.769 kN 

First HINGE Load = 6.917 kN 

SQUASH Load = 22.477 kN 

Non-Sway 

* Sway 

* Sway 

Non-Sway 
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7.2 Preliminary Experimental Results and Interpretation 

Provided the experimental procedure has been carefully carried out without 

significant errors for each of the two buckling modes, sway and non-sway, two 

pieces of important information can be obtained from Southwell Plot: 

1) The classical critical load, given as the gradient of the best-fit line that 

passes through the experimental points and 

2) The total equivalent imperfection, which represents the sum of geometric 

and loading imperfections. 

The fact that the plot-points lie on a straight line verifies experimentally the 

validity of theory. The slope of this line (critical load) is independent of any form 

of imperfections. It depends only on the geometry (length, cross section), material 

and boundary conditions of the column. The value of critical load can then be 

compared with the corresponding value obtained theoretically (computer program for 

Eigenvalue Problem). 

The total equivalent imperfection is another vital experimentally determined 

parameter. It plays a controlling influence of the first yield P, and the first plastic 

hinge P™ loads. The load to form the first plastic hinge load is generally close to 

the load necessary to convert the structure into a mechanism; a mechanism will 

usually require formation of more than one plastic hinges. The two theoretical loads, 

Pfy, Ρ a, constitute a lower and a close upper bound solution for the ultimate load 

of the column, obtained experimentally. 

Table 7_2 summarizes the main characteristics of the frames used for the 

preliminary programme of experiments, and includes 

i) frame geometries (lengths and cross sectional dimensions of members) 

ii) frame stiffnesses (rotational symmetric CA for the non-sway mode, 

rotational antisymmetric CA and translational KA for the sway mode) 
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iii) Squash load Ρ for the central column's cross section. 

Table 7_2 Main characteristics of preliminary experimental frames 

Test 

No 

2M 

3M 

7M 

13M1 

13M2 

16M1 

21M 

27JL 

28JL 

29JL 

4AU 

4AUa 

19S 

20S 

Frame Geometry 

mm 

298 

298 

310 

310 

310 

298 

310 

317 

324 

330 

470 

470 

470 

470 

L2 

mm 

286 

286 

286 

286 

286 

286 

286 

320 

295 

290 

330 

330 

330 

330 

mm 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

mm 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

»3 

mm 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

, Frame Stiffness 

CA 

kN\mmfrad 

1398.21 

1398.21 

1390.39 

1390.39 

1390.39 

1398.21 

1402.34 

1204.45 

1328.85 

1354.48 

1105.79 

1105.79 

1105.79 

1105.79 

c' 
kN-mm/rad 

1706.41 

1706.41 

1692.42 

1692.42 

1692.42 

1706.41 

1713.65 

1447.85 

1607.92 

1639.36 

1294.46 

1294.46 

1294.46 

1294.46 

κΑ 

Nfmm 

27.93 

27.93 

25.12 

25.12 

25.12 

27.93 

27.78 

21.19 

21.65 

20.94 

7.18 

7.18 

7.18 

7.18 

Ρ 
y 

kN/mm2 

22.48 

22.48 

22.48 

22.48 

22.48 

22.48 

22.48 

22.48 

22.48 

22.48 

22.48 

22.48 

22.48 

22.48 

Table 7_3 demonstrates the theoretical and experimental results obtained for 

this range of experiments. 

Columns 2 and 3 contain the experimental values for the lowest sway and 

non-sway critical loads, obtained from interpretation of the Southwell Plot. 

From the same plot the total equivalent imperfections for the above two 
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modes are presented in columns 4 and 5. 

The respective theoretical values of the critical loads, calculated through the 

Eigenvalue problem software as discussed in the preceding Section, for the same 

frame geometry are shown in columns 6 and 7. 

For the total equivalent imperfections found through the Southwell Plot, 

columns 7 and 8 provide the theoretical levels of the first yield and the first plastic 

hinge loads. 

Column 10 shows the maximum applied axial load recorded from the tests, 

and finally, columns 11 and 12 list the ratios of the experimental to theoretical 

critical loads obtained for each of the modes. 

The theoretical model of the limited frame, seemed to give a good agreement 

between the theoretically calculated elastic critical loads and those obtained 

experimentally. As can be concluded from columns 11 and 12, the observed 

discrepancy was less than ±5%. In two only cases on the sway mode has this 

discrepancy found to be in excess of this value, at 12% and 13% respectively. This 

may be ascribed to the lack of verticality of the applied axial load, causing at every 

stage of the experiment a continuous development of a small horizontal force 

component, which in turn affects both the horizontal deflections of the column. 

A comparison between the listed maximum applied axial load and the 

theoretical load levels to cause first yield and full plasticity shows that PmaK was in 

some cases less than the first yield load, but in the main it was somewhere in 

between P, and Ρ h. This is because the maximum axial load was not generally 

applied in a way to convert the structure into a collapse mechanism; it was increased 

until a level where the column was considered to present relatively larger deflections 

without seeming to show a significant increase in the axial load. 

Although for most of thé cases, it can be seen that a close agreement exists 

between experiments and theory, this experimental procedure was revised and 
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developed into a more consistent programme discussed in the next section. 

7.3 Final Experimental Results and Interpretation 

The experimental procedure, leading to results outlined in table 7_3, followed 

a new series of experiments, where, as discussed below, a range of different test 

results were obtained to cover a certain buckling behaviour of the central column. 

For each frame geometry three different and independent experiments have 

been carried out, corresponding to the elastic, elastic-plastic and plastic collapse 

buckling behaviour of the central column. The collected data were readings which 

corresponded to both the loading and the unloading stage of the column. 

In a way similar to that presented in section 7.1, table 7_4 lists the 

experimental data obtained from a typical test along with the necessary 

interpretations of results to allow the Southwell Plot for both modes. It is clear that 

the two additional columns of tabulated experimental data that have been added, are 

to provide the corresponding points for the unloading path of the load versus 

displacements diagram. The rest of the procedure, for developing the Southwell Plots 

for both modes, remains the same as that described in section 7.1. 

The fact that three independent experiments were carried out for each frame 

geometry was dictated from the procedure itself, according to which: 

1. a specific frame geometry is initially chosen after a large parametric study 

on numerical experiments undertaken with the developed software. Frame geometry 

was chosen to achieve selected ratios between the first two critical loads. 

2. for selected frame geometry a notional loading imperfection was given to 

the central column and the theoretical values for the first yield and first hinge loads 

were obtained. 

3. Prior to starting the first experiment concerning the elastic buckling 

behaviour, the maximum axial load, was chosen in advance to be well below the 

first yield load, allowing suitable increments of axial load to be selected. 

4. Having more or less applied the above loading imperfections, (the column 

initially is considered to be geometrically perfect), deflection readings at the top and 
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middle are taken for increasing and decreasing loads. 

5. These data are then developed as in section 7.1. Figs. 7-7, and 7-8 show 

the Southwell Plots for both modes while Fig. 7-9 depicts the deflections for both 

loading and unloading of the top and the middle cross section of the column against 

the applied axial load. 

6. Having validated the theoretical values for the first critical loads obtained 

from the Southwell Plot, the values for the total equivalent imperfections obtained 

through Southwell Plot for both modes \^ere then put in the program to give new 

values for the first yield and first hinge load; in most cases the 'actual' imperfections 

differed from the 'notional' imperfections applied for the same frame. A check that 

the maximum applied axial load was still less than the calculated first yield load, 

was a necessary step for this stage. 

7. The next two graphs, shown in Figs. 7-10 and 7-11, corresponding to the 

buckling shape and the bending moment contribution at first yield for the sway and 

the non-sway modes along the column, were then obtained through the software for 

the same frame geometry and imperfections. This was followed by the elasto_plastic 

path graph, as discussed in section 7.1, shown in Fig. 7-12. Finally a brief summary 

of theoretical data and results, as those described in section 7.1, was provided by the 

program; these are shown on the next pages. 

8. At the second experiment (elasto-plastic buckling) the same loading 

imperfections were applied and the same procedure followed, with the difference that 

the experiment was continued just beyond the calculated first yield load. 

9. The same interpretation procedure as that of the first experiment is 

followed, except that the last points of both Southwell Plots correspond to elasto-

plastic regime and are excluded. 

10. The third experiment is usually carried out under larger imperfections 

developed as a result of earlier plastic deformations. This aims to show the reduction 

of the maximum load carrying capacity of the column. The procedure is the same 

as that followed for the second experiment. 

The following pages outline the procedure for a typical frame geometry. 
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Table 7_4 T e s t : 25ocl 

E l a s t i c B u c k l i n g 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3 

3.1 

3.2 

3.3 

Loading 

Top 

reads 

969 

973 

977 

981 

986 

990.5 

996.5 

1002.5 

1009 

1016.5 

1024 

1028 

1032 

1036 

1040 

1045 

1051 

1057.5 

1064 

1069.5 

1078 

1083 

1090 

1098 

Mid 

reads 

1156 

1156.5 

1156.5 

1157 

1158 

1158 

1158 

1158.5 

1159.5 

1160.5 

1163 

1163.5 

1164.5 

1166 

1167 

1168.5 

1171 

1172.5 

1174.5 

1176.5 

1178.5 

1181.5 

1184.5 

1188 

Unloading 

Top 

reads 

988 

997 

1001 

1007.5 

1013 

1019 

1025 

1031 

1038 

1045 

1052.5 

1056 

1061 

1066.5 

1071 

1076 

1080 

1083 

1087 

1091.5 

1095.5 

1097 

1098 

1098 

Mid 

reads 

1148.1' 

1149 

1151. 

1152 

1152. 

1153 

1153 

1154 

1155 

1156 

1157 

1157. 

1158. 

1159. 

1160 

1161 

1163 

1165 

1166 

1168 

1171. 

1176 

1180 

1188 

S o u t h w e l l P l o t 

Sway Mode 

100 

mm 

0.000 

0.040 

0.080 

0.120 

0.170 

0.215 

0.275 

0.335 

0.400 

0.475 

0.550 

0.590 

0.630 

0.670 

0.710 

0.760 

0.820 

0.885 

0.950 

1.005 

1.090 

1.140 

1.210 

1.290 

ôf 

100P 

mm/kN 

0.000 

0.200 

0.200 

0.200 

0.213 

0.215 

0.229 

0.239 

0.250 

0.264 

0.275 

0.281 

0.286 

0.291 

0.296 

0.304 

0.315 

0.328 

0.339 

0.347 

0.363 

0.368 

0.378 

0.391 

Non-Sway Mode 

100 

mm 

0.000 

0.025 

0.045 

0.070 

0.105 

0.128 

0.158 

0.193 

0.235 

0.283 

0.345 

0.370 

0.400 

0.435 

0.465 

0.505 

0.560 

0.608 

0.660 

0.708 

0.770 

0.825 

0.890 

0.965 

100P 

mm/Kn 

0.000 

0.125 

0.113 

0.117 

0.131 

0.128 

0.131 

0.138 

0.147 

0.157 

0.173 

0.176 

0.182 

0.189 

0.194 

0.202 

0.215 

0.225 

0.236 

0.244 

0.257 

0.266 

0.278 

0.292 
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Bending Moment contribution at first yield 
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THEORETICAL DATA & RESULTS OF TEST 25ocl 

PROP_sets = 3, SWAYJmp = -1.07 mm, NON-SWAY_imp = -0.48 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A , I Zel Zpl Y.str 

1 210.0 3.0 13.0 38.47 28.53 19.02 29.26 360 

2 250.0 5.0 13.0 62.44 125.70 50.28 81.45 360 

3 210.0 3.0 13.0 38.47 28.53 19.02 29.26 360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 920.69 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1112.57 kN*mm/rad 

Translational (Sway) Stiffness of frame : 25.34 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta theta_A Mode-Case 

1 5.944 4.4573 1.00 -0.171 0.000 0.005 Non-Sway 

2 6.423 5.2043 1.00 -14.263 88.629 -0.005 * Sway 

First YIELD Load = 3.066 kN 

First HINGE Load = 3.579 kN 

SQUASH Load = 13.848 kN 
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T e s t : 25oc2 
ElasticJPlastic Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 

2.6 

2.8 

3 

3.2 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

4 

4.1 

4.2 

3.93 

Loading 

Top 

reads 

987 

988.5 

990 

991 

993 

995 

998.5 

1003.5 

1009 

1016 

1023 

1031.5 

1040 

1050 

1063 

1074.5 

1085.5 

1103 

1113.5 

1123 

1135 

1149.5 

1164 

1182 

1195 

1214 

1233 

Mid 

reads 

1148.5 

1150 

1151 

1152 

1152.5 

1154 

1155 

1156 

1157.5 

1159.5 

1162 

1164.5 

1166 

1171 

1175 

1180.5 

1187.5 

1193.5 

1197.5 

1203 

1210 

1218 

1229.5 

1241.5 

1263 

1290 

1463 

Unloading 

Top 

reads 

1008 

1019 

1026 

1033 

1038 

1044 

1052 

1059 

1068 

1078 

1087 

1098 

1109 

1122 

1139 

1155 

1178 

1198.5 

1210 

1220 

1231 

1236 

Mid 

reads 

1195 1̂ 

1196 

1200 

1203 

1207 

1210 

1215 

1219. 

1224. 

1231 

1238 

1247. 

1258 

1272 

1285 

132 

1323 

1350 

1368. 

1385 

1405. 

1428. 

S o u t h w e l l P l o t 

S w a y M o d 

100 

mm 

0.000 

0.015 

0.030 

0.040 

0.060 

0.080 

0.115 

0.165 

0.220 

0.290 

0.360 

0.445 

0.530 

0.630 

0.760 

0.875 

0.985 

1.160 

1.265 

1.360 

1.480 

1.625 

1.770 

1.950 

2.080 

2.270 

2.460 

\ 

100P 

mm/kN 

0.000 

0.075 

0.075 

0.067 

0.075 

0.080 

0.096 

0.118 

0.138 

0.161 

0.180 

0.202 

0.221 

0.242 

0.271 

0.292 

0.308 

0.341 

0.361 

0.378 

0.400 

0.428 

0.454 

0.488 

0.507 

0.540 

0.626 

Non-Sway Mode 

δ -δ,/2 
m t' 

100 

mm 
0.000 

0.023 

0.040 

0.055 

0.070 

0.095 

0.123 

0.158 

0.200 

0.255 

0.315 

0.383 

0.440 

0.540 

0.645 

0.758 

0.883 

1.030 

1.123 

1.225 

1.355 

1.508 

1.695 

1.905 

2.185 

2.550 

4.375 

100P 

mm/kN 

0.000 

0.113 

0.100 

0.092 

0.088 

0.095 

0.102 

0.113 

0.125 

0.142 

0.158 

0.174 

0.183 

0.208 

0.230 

0.253 

0.276 

0.303 

0.321 

0.340 

0.366 

0.397 

0.435 

0.476 

0.533 

0.607 

1.113 
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Bending Moment contribution at first yield 
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THEORETICAL DATA & RESULTS OF TEST 25oc2 

PROP_sets = 3, SWAY_imp = -0.67 mm, NON-SWAY_imp = -0.40 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 210.0 3.0 13.0 38.47 28.53 19.02 29.26 360 

2 250.0 5.0 13.0 62.44 125.70 50.28 81.45 360 

3 210.0 3.0 13.0 38.47 28.53 19.02 29.26 360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 920.69 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1112.57 kN*mm/rad 

Translational (Sway) Stiffness of frame : 25.34 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta theta_A Mode-Case 

1 5.944 4.4573 1.00 -0.171 0.000 0.005 Non-Sway 

2 6.423 5.2043 1.00 -14.263 88.629 -0.005 * Sway 

First YIELD Load = 3.442 kN 

First HINGE Load = 3.857 kN 

SQUASH Load = 13.848 kN 
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T e s t : 25oc3 
Plastic Collapse Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 

2.6 

2.8 

3 

3.2 

3.4 

3.6 

3.7 

3.8 

3.9 

2.53 

Loading 

Top 

reads 

1007 

1009 

1010 

1012 

1014 

1017.5 

1022.5 

1028.5 

1035.5 

1043.5 

1052.2 

1062.5 

1072 

1084 

1098 

1113 

1128 

1148 

1173 

1186 

1200 

1209 

1288 

Mid 

reads 

1094.5 

1096.5 

1100 

1103 

1106.5 

1109 

1112 

1116 

1120.5 

1126 

1132.5 

1141 

1151.5 

1163 

1178.5 

1194 

1216 

1245 

1281 

1303 

1331 

1370 

1842 

Unloading 

Top 

reads 

1050 

1064 

1072 

1080 

1088 

1096 

1103.5 

1112 

1123 

1135 

1149 

1163 

1179 

* 

Mid 

reads 

\ 
1484 

1502 

1520 

1540 

1561 

1586 

1611 

1639 

1671 

1704 

1741 

1780 

1818 

S o u t h w e l l P l o t 

Sway Mode 

100 

mm 

0.000 

0.020 

0.030 

0.050 

0.070 

0.105 

0.155 

0.215 

0.285 

0.365 

0.452 

0.555 

0.650 

0.770 

0.910 

1.060 

1.210 

1.410 

1.660 

1.790 

1.930 

2.020 

2.810 

àt 

100P 

mm/kN 

0.000 

0.100 

0.075 

0.083 

0.088 

0.105 

0.129 

0.154 

0.178 

0.203 

0.226 

0.252 

0.271 

0.296 

0.325 

0.353 

0.378 

0.415 

0.461 

0.484 

0.508 

0.518 

1.111 

Non-Sway Mode 

100 

mm 

0.000 

0.030 

0.070 

0.110 

0.155 

0.198 

0.253 

0.323 

0.403 

0.498 

0.606 

0.743 

0.895 

1.070 

1.295 

1.525 

1.820 

2.210 

2.695 

2.980 

3.330 

3.765 

8.880 

K- M2 

100P 

mm/kN 
0.000 

0.150 

0.175 

0.183 

0.194 

0.198 

0.210 

0.230 

0.252 

0.276 

0.303 

0.338 

0.373 

0.412 

0.463 

0.508 

0.569 

0.650 

0.749 

0.805 

0.876 

0.965 

3.510 
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Bending Moment contribution at first yield 
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THEORETICAL DATA & RESULTS OF TEST 25oc3 

PROP_sets = 3, SWAYjmp = -0.73 mm, NON-SWAY_imp = -0.70 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A * I Zel Zpl Y.str 

1 210.0 3.0 13.0 38.47 28.53 19.02 29.26 360 

2 250.0 5.0 13.0 62.44 125.70 50.28 81.45 360 

3 210.0 3.0 13.0 38.47 28.53 19.02 29.26 360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 920.69 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1112.57 kN*mm/rad 

Translational (Sway) Stiffness of frame : 25.34 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta theta_A Mode-type 

1 5.944 4.4573 1.00 -0.171 0.000 0.005 Non-Sway 

2 6.423 5.2043 1.00 -14.263 88.629 -0.005 * Sway 

First YIELD Load = 3.366 kN 

First HINGE Load = 3.807 kN 

SQUASH Load = 13.848 kN 
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7.4 Tabulated Comparisons between experiments and Theory 

Following the procedure outlined in section 7.3 a programme of experiments 

has been undertaken to cover a parametric range which represents wide variations 

in the ratio of sway to the non-sway critical loads. This should allow thorough 

testing at the theoretical modelling developed for interactive elastic-plastic buckling. 

This range of test frames is described in the following pages. Table 7_5 indicates 

that test frames were in three major groups, which are classified according to the 
i 

ratio of their sway to non-sway critical loads as discussed in section 6.2. 

The first column shows the group-case, which, depending upon the ratio of 

PcS/PcN will determine whether buckling is sway dominated, strongly coupled or non-

sway dominated. 

The numbering used for this final programme of experiment is given in 

column 2. 

Columns 3 to 7 describe the geometry of the frame by giving the length of 

the central (Lx ) and side (Z,3) columns, the length L2 of the beams along with their 

corresponding thickness bx, b2, and b3. The breadth for all members is 13 mm. 

Columns 8 to 13 provide the theoretically derived results. Columns 8 and 9 

list the lowest sway and non-sway critical loads, while the squash load is given in 

column 10. The ratio of the sway to non-sway critical load is in column 11. It may 

be noted that this ratio: 

i) covers a range from 0.659 to 0.875 for the first group; 

ii) is 1.00 for the second group frames; and 

iii) covers a range from 1.1 to 1.6 for the third group frames. 

Columns 12 and 13 provide an approximate first yield and first hinge loads, because 

they have been calculated on the,assumption that a notional total sway imperfection 

is ξ j = Lj/400 mm , while the respective non-sway is ξ2 = ^1(PcI/Pc2Y
IZ • 
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The last column contains the name of each frame geometry in terms of the 

date (number followed by the first letter(s) of the month) of performance. 

An experimental procedure outlined in the preceding section, for each of the 

frame geometries, gave results, which, for comparison reasons are summarised 

according to the expected behaviour in the subsequent tables. 

For the sake of space, a detailed record of the experimental results listed in 

tables 7_6, 7_7 and 7_8 is presented in Appendix E. In this Appendix for each 

experiment a full list of the experimental data along with the Southwell Plot 

information are kept on the first page; on the second page the Southwell plots for 

both modes are depicted along with the corresponding information about the critical 

loads and the total equivalent imperfections, whilst the load vs displacement diagram 

with the inserted figure of frame geometry, along with the theoretically obtained data 

are presented on the third page. 

A general observation which holds for every single experiment, independently 

of the central column's buckling behaviour, is the linearity of the Southwell Plot 

points at the elastic regime. 

The fluctuation of the ratio of the experimental to the theoretical critical loads 

for both modes was between 0.9 and 1.1 although there were some odd cases where 

this ratio was beyond these limits, and only in the elasto-plastic behaviour of 1^=235 

and L2=400 frame geometry did the discrepancy reach 0.81 and 1.23. 

The ultimate axial load level (buckling load) was for almost all cases of 

elasto-plastic or plastic collapse buckling behaviour greater than the theoretically 

predicted first hinge load. This justifies the fact that the second and probably the 

third plastic hinges have been formed shortly after the formation of the first hinge. 

In only two cases, the Lj/L3=260/300 and Lj/L3=235/370 frame geometries, was the 

buckling load, respectively, a little less and equal to the first yield load. This may 

be attributed to the interaction between the two buckling modes as a result of the 

large applied imperfections. 
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7.5 Graphical Comparisons between Experiments and Theory 

The tabulated presentation of comparisons between experimental and 

theoretical results for all the experiments outlined in the preceding Section is 

summarised in graphical form in Figs. 7-13 to 7-16. 

Making use of the data presented in Table 7_2 along with that of Tables 7_7 

and 7_8, four different graphs have been developed to demonstrate the observed 

deviations between the experimental and ̂ theoretical results. The comparisons have 

been made for: 

a) the sway and non-sway critical loads, Fig. 7-13 and 7_14 

b) the buckling load against the first yield and the buckling load against first 

hinge load, shown in Figs. 7-15 and 7-16. 

In all graphs the axes represent axial loads, which, for simplicity reasons, 

have been non-dimensionalised with respect to the squash load Ρ . 

On the top right end of each graph a few values of the ratio pth/pex have 

been used to draw the lines between which indicate the correlations of the 

experimental points. 

A comparison on the sway critical loads (Fig. 7-13), shows that the scattering 

points have a greater spread than that of the non-sway critical loads (Fig. 7-14), 

where they seem to be more concentrated along the diagonal line (pth/pex = \\ 

Comparing the maximum applied load to the first yield and first hinge load 

it seems that the first yield scattering points (Fig. 7-15) are further away from the 

diagonal line than those of the first hinge (Fig. 7-16). This seems to be quite 

reasonable in the sense that the buckling loads have to be closer to the first hinge 

loads rather than the first yield loads. 

Finally, through the graphs it can easily be established that in general, the 

majority of the deviations observed in all comparisons does not exceed 10%. 
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Chapter 8 

Existing Design Methods and a New 

Simplified Design Procedure 

8.1 Current Bases for Column Buckling 
ι 

In design practice the theoretical bases of column design formulae, curves or 

charts are based today on one of the three following concepts: 

(Ì) Bifurcation Approach According to this approach a perfectly 

straight column will start to bend only when the load reaches a certain upper limit. 

This upper limit would then represent the criterion for column strength, and would 

be based upon either the Euler elastic critical load or the Tangent modulus plastic 

strength load, depending respectively upon the range (elastic or inelastic) of the 

stress-strain curve. 

(a) Elastic stability - Euler load 

A centrally loaded, elastic, perfectly straight, pin-ended column of length L, 

moment of inertia /, and elastic modulus E, ceases to be stable at Euler load, PE, 

given by the equation 

PP = ^ (8.1) 
E L2 

Introducing the slenderness ratio λ = L/r, where r is the radius of gyration of the 

cross section, the average stress corresponding to the Euler Load is 

°£ = 
ÉK (8.2) 
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The slenderness ratio, λ = π 
Ν 

E 
, represents the situation where the elastic 

critical stress is equal to the material yield stress, and provides a limit for 

determining the average stress σ at failure. This limiting stress is then 

oy for λίλγ 

cE for λ>λν 

(8.3) 

Reminded is the relationship 
λ.. (σΑΪΙΖ 

y _ 

σ 

ν y ι 

σ/σ 

Figure 8-1 

Eq. (8.3) is plotted in a non-dimensional way in Fig. 8-1 to show the range 

of elastic buckling as predicted by Euler. 

(b) Inelastic stability - Tangent modulus load 

According to the tangent modulus theory, a perfectly straight column, similar 
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to the former one of case (a), will start to bend either at the Euler load or Tangent 

modulus load, depending on whether the average stress is less or greater than the 

proportional limit σρ. Indeed, after this limit, the relation between stress and strain 

is not linear and the Tangent modulus Et, which is the slope of this curve, may 

replace the elastic modulus in Euler equation. Therefore, the Tangent modulus load, 

given by Eq. (A.2) in Appendix A, holds only for σ ^ σ . 

The application of the tangent modulus theory is limited to those straight 
\ 

columns whose axes of symmetry coincide with the axes of symmetry of the residual 

stresses. However, due to random distribution of initial stresses, even a perfectly 

straight column will start to bent at an early stage of loading. 

The lack of current design methods based upon σβ and σ justifies the fact 

that even the Rankine formula, 

J_ = _1_ + J_ 
°b °E °y 

developed in section 2.6.3 and any of its empirically based extensions are not really 

rational. 

(Ü) Imperfection Approach This is the most rational treatment for the 

buckling problem. The strength of the column is determined by considering the 

interaction between elastic stability and material plasticity by geometrical 

imperfections. Under the assumption that the initial non-straight shape of the column 

has a sine form, the relation between the axial load, P, and final deflection, w, is 

given by 

1 
w - w 

1 P_ (8.4) 
~ pE 

This equation, shown in Fig. 8-2 by the curve ABC, represents the behaviour of a 

column with pure elastic material behaviour and an initial deflection w°. Young2, in 
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1807 was the first to establish the imperfection approach. 

In practical situations the range of response for which the material remains 

elastic, is limited. Eventually the maximum stressed fibres will reach material yield, 

and an elastic plastic response will start in the column. The load deflection diagram 

for this regime is shown by the curve BDE with the peak point at D, corresponding 

to the maximum capacity of load, Pb, that the column can carry. Many parameters 

are involved in determining this load, making the whole procedure very complicated. 

As a lower bound to the maximum lbad, Ph, Ayrton and Perry chose the load 

corresponding with first yield, Pfi ; this represents the maximum load that the column 

can carry while remaining elastic. They gave this load in a form equivalent to the 

formula 

where PY = oyA is the squash load 

ρ = w" /(Z/A) is the imperfection parameter 

Ζ is the elastic section modulus. 

If it is assumed that the column remains elastic until a fully formed plastic 

hinge occurs at a point G, it is normally the case that the corresponding load Pfh, 

is a close estimate of the buckling collapse load Ph. The first hinge load will usually 

represent an upper bound solution to the buckling load. 

In order to calculate the first plastic hinge load P)h, the full section plasticity 

curve FGH has to be determined. This curve is often approximated by assuming that 

the material is rigid-plastic. Under this assumption there will be no lateral deflection 

until the load reaches Py, when, a plastic hinge forms somewhere in the column. 

This hinge causes a deformation on the column and consequently, through the axial 

load, a bending moment is generated; this in turn produces an extra deflection and 

thus an additional bending moment. This procedure results eventually in the 

reduction of the load carrying capacity of the column, the behaviour of which is 

shown in Fig. 8-2 by the curve FGH. The intersection of this curve with the elastic 
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w/w° 

Figure 8-2 

curve ABC corresponds to the first plastic hinge load, Pjh. 

There is a number of currently important design codes, like BS 449, BS 5950, 

ECCS which make use of Py without going into details or employing Pfh. 

(Hi) Empirical Approach Here the calculation of the maximum 

strength of axially loaded columns may be a complicated process including both 

physical and numerical experiments. The load-displacement curve of an imperfect 

column is traced, involving numerical integration or empirical simplification. The 

design formulae or curves obtained rely upon curve fitting to the numerical results. 

SSRC multiple column curves discussed in the next section would be classified 

under this approach. 

A small number of currently significant design curves is discussed in the next 

section, where, each one of the curves will be located within one of the above three 

approach philosophies. 
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8.2 Column Design Curves in Codes of Practice 

There are various column design curves used in design to predict the strength 

of a column. A number of these curves have been plotted as lines to provide lower 

bounds to the scatter band of test or numerical results. They are based theoretically 

on one of the approaches described in the preceding section. In this section emphasis 

will be placed on interaction formulae employed in a number of currently important 

design codes. 
\ 

Yield 

Figure 8-3 

In Fig. 8-3 four of the more commonly adopted curves are plotted in a non-

dimensional form of Pu /PY versus Py /PE, where Pu is the ultimate compression 

capacity of an axially loaded column proposed by the design codes. 

Some design codes adopt different curves for each class of cross sectional 

shape. Taking this into account, with the aim of a better comparison, all the column 

curves are plotted for an I-cross-section, buckling about its minor axis. Since some 

of the curves do not lend themselves to a dimensionless form, they have been plotted 

for a mild steel with a yield stress of 265 N/mm2 and elastic modulus of 205 

kN/mm2. 
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The variation in the experimentally observed buckling loads which have been 

used to justify a particular design curve, is emphasized by the spread of the curves. 

The heavy line represents the Euler curve which has been cut off at a stress which 

corresponds to the yield point. The four curves are: 

8.2.1 British Standard (BS 449) column curve 

The BS 44953 column curve is based on the imperfection approach, using 

the Ayrton-Perry formula 

After calculating the imperfection parameter p, the load Pfy obtained by the formula, 

was equal to the lower bound of the scattered buckling loads obtained from 

experiments. 

Robertson54 suggested for ρ a value of ρ = 0.3 — ΙΟ"2, which was used in 
r 

British Code for many years. On the basis of Godfrey's55 recommendation in 1962, 

the Standard adopted the modified value for imperfection parameter 

ρ = 0.3 ί^Τ 
r 

IO"4. 

Since 1969 the design curve in BS 449 has been based on this value of parameter; 

it is this curve that is plotted in Fig. 8-3. 

8.2.2 British Standard (BS 5950) column curves 

In the recent British Standard BS 595030 different column curves were 

adopted for different types of columns. These curves are again based on the 

imperfection approach using the same equation as BS 449. Dwight56 proposed a 
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modified form of the Ayrton-Perry equation that matched the European curves very 

closely. So he attributed to ρ the value 

ρ = 0.001 α (λ - λο) ^ 0 (8.7) 

where the value of a, (Robertson's constant), depending upon the shape of the cross 

section and the axis of buckling, has one of the four values 

2.0 
3-5 (8.8) 
5.5 
8.0 

and λ0 is the limiting slenderness and should be taken as 

λ = 0.2π 
Ν 

£ = 0.2 λ (8.9) 

°y 

In Fig. 8-3 a BS 5950 column curve has been plotted for the case of 

α = 0.0055, which corresponds to the strength of a wide flange I-section column, 

buckling about its minor axis. 

8.2.3 Structural stability Research Council (SSRC) multiple 

column curves 

The SSRC multiple column curves were developed on the basis of results 

from a numerical approach. Bjorhovde57 in 1972, using a computer model, 

generated by numerical techniques some 112 column curves for pin-ended members 

with realistic residual stress distributions and with a sinusoidal shape of initial 

deflection having a maximum amplitude L/1000. Each column curve was obtained 

by regression of a set of points which in turn were the peak points of the load-

deflection curves of a column at different slenderness ratios. 

He then classified these curves in three multiple column curves, each one of 
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which represented a specific category of columns and was approximated by a set of 

five equations related to a specific range of slenderness ratio. 

Later in 1979, Rondai and Maquoi58 showed that the SSRC equations could 

be represented quite accurately by the Ayrton-Perry formula, under the assumption 

that the imperfection parameter, ρ has the value 

α (λ-0.15) λ ;>0.15 , g . 

0 \ λ < 0.15 , 

where λ is a dimensionless slenderness ratio, with a value given by 

l = 1(£ ν A " v y 

n[r)\ Ε λ 
_y (8.11) 

and α is a numerical coefficient for each one of the three SSRC curves; values of 

α are given as 

f 0.103 for SSRC curve 1 
α = \ 0.293 for SSRC curve 2 ( 8 · 1 2 ) 

( 0.622 for SSRC curve 3 

These values of α had been calculated in order to minimize the deviation between 

the Bjorhovde equations for the above three multiple column curves and the 

analytical expression coming from the Ayrton-Perry equation (8.6), where the 

imperfection parameter ρ is replaced by the values of equation (8.10). For α = 0.293 

the Rondal-Maquoi proposal is almost coinciding with the analytical expressions. 

8.2.4 European (ECCS) column curves 

ECCS column curves, like the SSRC multiple column curves, were obtained 

empirically. The European studies used theoretical data as a basis for computations 
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of column design curves which then were compared with test results. These design 

recommendations28 employ three basic column curves, the use of which depends 

upon the shape of the cross section. 

Originally they were published in tabular form without mathematical 

expressions. The validity of the curves is limited to those steel structures with a 

yield point up to 430 N/mm2. For high strength steel an additional design curve was 

introduced. Another curve was also added for the design of heavy sections. In Fig. 

8-3 only the last curve, applied to a wide flange I-shape about its weak axis, has 

been plotted. 

8.3 Interaction Column Design in Codes of Practice 

8.3.1 In BS 5950 

For columns subjected to a combined action of bending moments and axial 

load, BS 5950 gives three interaction formulae to be used for a safe design. Each 

formula checks the capacity (local and overall) at the sections of maximum bending 

moment and axial load. 

i) Local capacity check. The code assumes linear interaction between the 

applied axial load and the moments about two axes (major χ and minor y), giving 

the relationship 

Ρ M M 
-I- + ^ + —L £ι (8.13) 

A°y McX

 Mcy 

where: Μ , M are the applied moments about the major and minor axes at 

critical region and 

Mcx, Mc are the moment capacities about the major and minor axes when 

no axial load is present. 
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\ p/pc 

Linear interaction 
plane 

My/Mcy 

Overal Buckling Sceme (BS 5950) 

ii) Overall buckling check. For 

this check there are two approaches: 

a) The simplified approach, 

requiring the satisfaction of equation 

A°y Mb °A 

b) The more exact approach, 

with the following relation 

Figure 8-4 mM„ mM„ 

" « May 

£ 1 (8.15) 

where: m is the equivalent uniform moment factor; m = 1 for end supports with 

equal moments, and, depending on the ratio of the smaller to the larger end 

moment, takes a minimum value of 0.43 (see Eq. 2.18). 

Mb is the buckling resistance moment capacity with respect to the major 

axis (=Sxpb) 

Sx is the plastic modulus of the section about the major axis 

pb is the bending strength and is a function of slenderness ratio 

Ζ is the elastic section modulus about the minor axis 

Max is the maximum buckling moment about the major axis in the 

presence of axial load, taken to be the lesser of 

M. 

\--Ls 

I 0.5P^ 
1 + 

Ρ , 
ex J 

or M, 
Pi 

cy ) 

M is the maximum buckling moment about the minor axis in the 
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presence of axial load taken as 

Mi 
ρ 

'"(. 0 . 5 ^ 
1 + 

Ρ , 

M. 

where: pcx, pcy are the compression resistances about the major and minor axes 

respectively which are usually identical. 

The above interaction formulae refer to linear bending moments derived 

from linear analysis of the overall structure of which the column is a part. These 

linear moments include bending moments which are considered to be generated by 

eccentric loading. Nowhere in BS 5950 is made any reference in the non-linear 

bending moments of the column. 

8.3.2 InSSRC 

Following a similar approach, this code gives the formula 

Ρ CmMt m ο 

Υ+ M(1-P/PF) 
ζ 1 (8.16) 

where Ρ is the compression capacity of the axially loaded column obtained from 

the SSRC column design curves, M is a linear bending moment, M is the plastic 

moment capacity and 

Cm = 0.6+ 0.4 β à 0.4 (8.17) 

is the equivalent uniform moment factor, in which β is the ratio of the smaller to 

the greater end moment similar to the parameter in BS 5950. The curves are 

empirically obtained assuming an initial deflection 0.00IL at mid-height of the 

column. 
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8.3.3 InECCS 

A similar approach to that of BS 5950 led to the use of the equation 

Pv M(l-P/PE) 
ζ 1 (8.18) 

where e * is a notional eccentricity which accounts for all imperfections and M0 

is a linear bending moment. 

The value of e * can be obtained from the following equation 

Ρ Pe* 
+ 

Ρ Μ(ί-Ρ/ΡΕ) 
ζ 1 (8.19) 

where Ρ is the axial compression capacity of the column obtained from appropriate 

ECCS column design curves. The value for Cm is the same as that given in SSRC. 

The theoretical results were developed on the assumption that an initial deflection 

of 0.001L was always present at mid-height of the column. 

8.4 Multi-storey Rigid Frame Design 

In this section a design method is described for multi-storey multi-span 

steel frames. For these frames attention will be drawn on the method which is in use 

by BS 5950. 

L Elastic Design 

For an elastic design the forces and moments in the members are 

determined from a linear elastic analysis of the entire frame or of suitable sub-

frame. 

After specifying some general conditions to be met, concerning 
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1. the loading (vertical, horizontal, notional horizontal) 

2. the base stiffness and 

3. the classification of a multi-storey frame (sway, non-sway), 

the code refers to the necessary conditions for a modification up to 10% of the peak 

elastic moments in any member. It finishes with the general remark that the 

capacity and the buckling resistance should be determined in accordance with 

what was discussed in section 8.3.1. ί 

Specifically for the non-sway frames the code suggests that they should be 

analysed using ordinary linear elastic methods, whilst for the sway proposes: 

a) an extended simple design using the effective length and 

b) an amplified sway method where the moments due to horizontal loading 

should be amplified by the factor 

Κ 
(λ -1) 

where: λ = is the elastic critical load factor. 
cr 200φ 

φ is here the largest value of any storey with the sway index, φ5 - , 
h 

where : h is the storey hight 

δ υ is the horizontal deflection on the top of the storey and 

hL is the horizontal deflection on the bottom of the storey. 

ii. Plastic Design 

Provided the frame is braced against sidesway out of its own plane, the 

code specifies again the above general conditions to be met, plus: 

1. the type of loading (static) 

2. the grades of steel (yield plateau, pult/p £ 1.2, elongation > 15%) 
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3. the geometrical properties (symmetry of cross section with respect to 

axis perpendicular to that of hinge rotation) 

4. the restraints (location with respect to plastic hinges) 

5. the stiffness at hinge locations and 

6. the fabrication restrictions (holes etc.). 

Referring to the buckling resistance, the code: 

a) for the non-sway frame members again goes back to section 8.3.1 and 

b) for the sway members suggests either a full elastic-plastic analysis, or 

a simplified method to be used, where 

(1) in the sway mode mechanism, the plastic hinges occur in all the 

beams and the base of each column, but no other plastic hinges form in the column 

(2) the other lengths of the columns remain elastic 

(3) for all combinations of loading there should be an equilibrium with 

the applied loads under which all members remain elastic 

(4) the restrictions for the clad frames are satisfied and finally 

(5) for unclad frames the following relationship should be used 

(a) Xcr * 5.75 

0.95 λ 
(b) when 5.75 £ λ < 20 : λη ζ p (λ - Ό 

(c) when Ac;.^20 : λρ ^1 

where λ is the ratio by which the factored loads would have to be increased to 

cause plastic collapse of the actual frame. 

In conclusion, while an extensive study has been made to cover every 

possible case in the design of frames, nowhere in the code is the non linear response 

generated by axial loading of an imperfect column of the frame addressed. 

For buckling into a single mode (either sway or non-sway) the imperfection 

effects of the linear moments are only partially treated as shown in cases i and ii of 

section 8.3.1. Where two or more potential buckling modes occur at the same or 

similar load levels there is no attempt to look at the potentially serious interactions 
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that can occur. 

8.5 Simplified Equation for Ultimate Load 

Consider the general expression for bending moments in terms of modal 

imperfections, characteristic functions and linear moments given in Eq. (5.18). The 

maximum stress of the column, occurring at the extreme fibres on the concave side 

of the cross section that bears the maximum bending moment, in the case of having 

a contribution from the lowest two critical modes, namely, the sway mode associated 

with antisymmetric configuration and the non-sway associated with symmetric mode, 

is given by equation (5.21), as 

Ρ EI 
ο = — + — 

m A Ζ 

p sXW-^^Xoc) 
CS ρ -ρ 

en 

mp(x) | m\x) (8.20) 

Assuming the column to have failed when σ = σ , in the absence of 

linear moments, a lower bound to the collapse load, Pb, is given by the solution of 

the equation 

Py = Pb

 + 
PbPcs 

Ρ -P ' s 

rcs rb 

PhP (8.21) 

Pcn-Pb 

where : Pcs, Pcn are respectively the 1st and 2nd elastic critical loads, 

p s, pn are the corresponding dimensionless imperfection parameters and 

α, β are curvature parameters as described in section 5.7. 

This equation expresses the buckling load of the column in the presence of 

sway and non-sway imperfections, in terms of the first two critical loads. In order 

to avoid having to relate this buckling strength to the four independent parameters 

involved (two imperfections and two critical loads), and to make the equation more 
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suitable for design, we need to make some further sensible simplifying assumptions. 

The main assumption which can be made here is the fact that the first two 

critical loads can approach each other in such a degree that they can almost be 

considered as identical. This assumption is not far from logic, since, otherwise, due 

to the lack of interaction between the first two critical modes, the beam-column 

could be treated as presenting a single degree of freedom, which is not the purpose 

of the present research. This interaction, occurring for close values of the first two 

critical loads, becomes stronger as Pcs approaches Pcn; and since this research is not 

concerned about a weak interaction between the first two critical modes, it is not 

only logical but becomes an important simplifying assumption to consider an 

equalisation of the first two magnitudes of critical loads. If Pc is the common value 

of these loads, substituting Pcs and Pcn for Pc, the previous equation can take the non-

dimensionalised form 

1 =p+^(psa+PnP) (8.22) 
Pc-P 

Pb 

where: ρ = — is the dimensionless buckling load characterising first material 

y 

failure and 
Pf 

pc = — is the ratio of the compound critical load to the squash load, 

y 

corresponding to a certain frame geometry of the beam-column. 

For a certain value of pc, calculated for a given topology of the beam-

column frame geometry through either an eigenvalue analysis or a conventional 

method, Eq. (8.22) enables the failure surface envelop to be calculated and drawn 

in a non-dimensionalised form as a function of the sway and non-sway 

imperfections. 
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Figure 8-5 

Fig. 8-5 shows two notional failure surface envelopes corresponding to 

values ρ and ρ . 

A new subroutine was incorporated in the main computer program to 

calculate the value of χ from Eq. (8.22), using the Newton-Raphson iteration 

technique. Depending on the difference between the first two critical loads, resulting 

from the geometric form of the frame, the results obtained from this equation for the 

first yield load were as closer to excellent as the values of Ρ and Ρ were 

approaching each other, being very useful for a simplified design procedure. 

For this purpose a systematic series of numerical experiments has been 

carried out for different values of lengths and cross-section-sizes to identify different 

frame-geometries, where the first two critical loads were almost identical. These 

cases were then allocated according to their first critical load over the squash load 
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Table 8_1 FRAME GEOMETRIES 

for which the first two critical loads are almost identical 

Case 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Lj-L
3 

mm 

470 

240 

280 

340 

330 

250 

170 

230 

170 

220 

160 

260 

150 

200 

170 

210 

150 

110 

125 

68 

L2 

m m 

330 

400 

350 

314 

314 

340 

200 

330 

350 

325 

200 

300 

330 

314 

300 

286 

286 

286 

150 

90 ^ 

m m 

5 

3 

4 

5 

5 

4 

3 

4 

3 

4 

3 

5 

3 

4 

4 

5 

4 

3 

•5 

3 

b2=b3 

mm 
1 ! 

6 

4 

5 

6 

6 

5 

3 

5 

4 

5 

3 

6 

4 

5 

5 

6 

5 

4 

4 

3 

"cs'"cN 

1.000 

1.002 

1.001 

1.001 

0.999 

0.998 

0.999 

1.001 

0.995 

1.001 

0.999 

0.999 

0.998 

1.004 

0.999 

1.000 

1.001 

0.997 

0.980 

0.994 

kN 

3.673 

2.921 

5.073 

6.753 

7.118 

6.263 

5.512 

7.361 

5.614 

8.019 

6.146 

11.129 

7.183 

9.647 

13.050 

16.619 

16.650 

13.197 

39.10 

43.04 

Ρ IP 
<v y 

0.163 

0.211 

0.278 

0.300 

0.317 

0.343 

0.398 

0.403 

0.405 

0.439 

0.444 

0.495 

0.519 

0.526 

0.715 

0.739 

0.911 

0.953 

1.740 

3.100 
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ratio, Ρ /Ρ , where a wide range of random values was covered. Table 8_1 contains 

some basic details of these geometries along with their Ρ /Ρ ratios. 

For design reasons, for every case of the above geometries, a chart like 

those of Fig. 8-8 onwards was produced, to relate the first yield capacity of the 

corresponding beam-column in the presence of both sway and non-sway 

imperfections. For this reason the main program was specially modified to organize 

the iterative technique dealing with imperfections, which eventually were given in 

a pure-number incremental procedure. According to this procedure, the beam-column 

imperfection parameter, expressed in Eq. (5.23) as ρ = -—, was bound to values 

no greater than 

1 . Z i ^ . h. (8.23) Ρ max 100 

since the total equivalent imperfection parameter ξ, for serviceability requirements, 

was taken as limited to less than Lj/100. The incremental value for p, coming from 

this equation, where ymax is the distance of the extreme fibre from the centre of 

bending of the cross section and r the radius of gyration, is 

op - 1 · y m a x · L l (8.24) 
1000 r r 

A chart presentation for the various values of Pc /P is given in the end 

of this section. 

Taking into account the discussion in section 5.9, referring to the effect of 

the buckling mode interaction on the failure at different locations of the beam-

column, two imperfection sensitivity failure surfaces have been schematically drawn 

in Fig. 8-6, corresponding to the ends and the middle of the column. This drawing 
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has been based on the fact that the sway imperfections do not actually affect failure 

at mid span; their effect is mainly limited at the ends of the column. The opposite 

applies with the non-sway imperfections, which influence the yielding failure mainly 

at the middle of the column. 

Figure 8-6 

A simplified design interaction formula for a beam-column, having a fairly 

reasonable conservative nature could be 

Ρ Ρ Ρ 
11 = 111 χ IH (8.25) 
Ρ Ρ Ρ 
rf rf rî 

where: Pb is the buckling load at first yield in the presence of both imperfections 

Pf is the failure load corresponding to the lesser of the first critical load 

(instability failure), or the squash load (material failure) 

PbS and PbN are respectively the buckling loads in the presence of only 
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sway or non-sway imperfections. These loads have to be calculated for the 

above two different locations of failure (ends, mid span). 

For this reason the basic software for the eigenvalue problem was modified to 

provide both PbS and PbN in the cases when failure occurred either at the ends 

(regular for Pbs, hypothetical for PbN), or in the middle of the column (hypothetical 

for PbS, normal for PbN), choosing each time the lesser of the two products. 

1st crìtica/ load 

5 mm 

PN (1to 9δρ) 

Figure 8-7 

For reasons of comparison, Fig. 8-7 depicts the calculated buckling strength 

of a beam-column, presenting a certain level of sway imperfections and a range of 

non-sway imperfections for a certain frame-geometry (stiffness). The performed 

calculations comprised the single buckling mode strength (sway and non-sway) in 

the absence of non-sway and sway imperfections, the exact numerical method 

(computer program) and the simplified design formula of Eq. (8.25). In this figure 

it is clear that: 
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a) for a certain level of sway imperfections the single sway buckling 

strength keeps constant values for pN = 0, whilst the single non-sway 

buckling strength decreases with an increase in pN. 

b) due to the close values between the first two critical loads, 

(PcS/PcN = 0.98), shown in the follpwing list of eigenvalues and eigen­

vectors, the results coming from the simplified formula of Eq. (8.22) seem 

to be almost throughout identical with those obtained from the exact 

solution through the software. 

c) the simplified formula of Eq. (8.25), which holds for any PcS/PcN ratio, 

provides results, that, keeping a smooth conservative character almost 

throughout, are close to those obtained theoretically. They have a non-

conservative character only for small pN. 

MEM 

M E M B E R P R O P E R T I E S 

d A I Zel Zpl Y.str 

1 250.0 5.0 

2 286.0 6.0 

3 250.0 6.0 

13.0 62.44 125.70 50.28 

13.0 73.44 209.00 69.67 

13.0 73.44 209.00 69.67 

Rot.Sym.Non-sway Rot.Antisym.Sway Transi.Sway 

81.45 

117.71 

117.71 

0.360 

0.360 

0.360 

Stiffness of frame : 1436.42 kN*mm/rad 1769.23 kN*mm/rad 44.445 N/mm. 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 

2 

5.558 

5.613 

12.1152 

12.3556 

1.00 

1.00 

-0.379 

2.871 

0.000 

-19.860 

0.008 

-0.007 

Non-Sway 

* Sway 

For this frame geometry the yield load is depicted in Fig. 8-8, through the 

exact solution, the simplified formula of Eq. (8.22) and the corresponding of Eq. 
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(8.25), where, two values of sway imperfections are combined with a range of non-

sway imperfections. 

Yield capacity against imperfections 

5 mm 

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 

Non- sway imperfections 9^(1 to 9 ôp) 

Figure 8-8 

The yield capacity of frame geometries where the ratio PcS/PcN is different 

from unity is depicted in Figs. 8-9 and 8-10. Compared with the exact solution, 

formula of Eq. (8.22) keeps throughout a conservative character up to 5%, while Eq. 

(8.25) does not seem to exhibit the conservativeness that had for PcS/PcN=l. 

In conclusion, depending on the PCSIPCN ratio, a use of Eq. (8.22) might 

give from accurate to, say, 10% conservative results whilst Eq. (8.25) may provide 

conservative to non-conservative results. 

The problem, therefore, which a designer might face in predicting the first 

yield capacity for a given frame geometry, is mainly confined in the calculation of 

the first two critical loads, if a single buckling mode is considered in the frame. This 

procedure is briefly outlined in the next section according to BS 5950 codes. 
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Yield capacity against imperfections for Pc /Py= 0.278 

0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 

Non- sway imperfections PN ( 1 to 9 δρ ) 

Figure 8-9 

Yield capacity against imperfections for Pc /Py=0.353 

0-24 -, pa 

Sway imperfections PcS=4.89kN -~-= 1.417 

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 

Non- sway imperfections PN (1 to 9 δρ ) 

Figure 8-10 
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Yield capacity against imperfections for Pc /Py=0.211 
V • y 
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Figure 8-11 
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Yield capacity against imperfections for Pc /Py=0.300 
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Sway imperfections 

5 mm 

Eqn (8.22) 

Eqn (8.25) 

Exact solution 

0.4 0.8 1.2 1.6, 2 2.4 2.8 3.2 3.6 

Non- sway imperfections PN (1 to 9 δ ρ ) 

Figure 8-12 
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Yield capacity against imperfections for Pc /Py=0.403 

Q ^ 

0.36 

0.34 

0.32 
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Eqn (8.22) 

Eqn (8.25) 
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Figure 8-13 
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Yield capacity against imperfections for Pc /Py=0.526 
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Figure 8-14 
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Yield capacity against imperfections for Pc /Py= 0.715 

0.55 

0.52 

0.49 

0.46 

0.43 

0.4 

0.37 

0.34 

0.31 

0.28 

0.25 
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Figure 8-15 
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Yield capacity against imperfections for Pc /P =0.911 
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Figure 8-16 
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Yield capacity against imperfections for Pc /Py= 1.740 

^ 

Sway imperfections 

1 - 5 mm 

0.3 0.45 0.6 0.75 0.9 1.05 1.2 

Non- sway imperfections PN ( 1 to 9 δ ρ ) 

Figure 8-17 

Yield capacity against imperfections for Pc /Py=3.100 
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0.34. 

3 mm 
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Non-sway imperfections PN(1 to 9 dp) 

1.2 

Figure 8-18 
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For each mode, an expression of α and β curvature parameters with 

respect to the effective length of the column, would of course lead to a calculation 

of a notional imperfection parameter, ρ*, which in turn substitutes the content of the 

parenthesis of Eq. (8.22). This imperfection parameter, involving imperfections of 

both modes, would result in a single-mode-buckling-load-graph, like the one of Fig. 

8-19, which may substitute every graph similar to those of Figs. 8-11 to 8-18. 

Yield capacity vs. compound criticai load & imperfections 
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Figure 8-19 

Through this procedure, which may well be the subject of a future paper, 

any combination of sway and/or non-sway imperfections would be replaced by ρ *, 

thus reducing the number of independent variables by one. In the graph Pc/P is the 

ratio of the compound critical load to the squash load and Ρ A. IΡ is the 

dimensionless buckling load characterising first material failure. 
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8.6 Step by Step Calculation of the Yield Capacity on Beam-

columns in a Simplified procedure 

It was shown in the previous section, that the load, necessary to cause 

initiation of yielding in a beam-column which is considered as a part of a frame 

where sway is uninhibited, in the case of a strong interaction between the first two 

critical modes, is a function of the level of the first critical load. This load level 

actually takes into account the geomptry of both the beam-column and its 

surrounding frame, i.e. the overall frame geometry. 

For a simplified design procedure used in the office, if a run of the 

computer program, developed for this research is not feasible, the above buckling 

strength can be approximately obtained through the following simplified steps: 

1) Through a linear analysis, calculate the loading imperfections for both 

modes, sway and non-sway, and add the most possibility of the geometric tolerances 

of the given symmetric frame geometry. A program like the one developed for this 

research could be used to calculate the loading imperfections at this stage. 

2) Calculate the ratios of second moment of area to length, {IIL), which 

correspond to both the column (Kc) and its adjacent beams (Kb) stiffnesses. 

3) Obtain the joint restraint coefficients K1 and K2 from the formula 

IK 
K. = K2=

 c— , (8.26) 
2Kc+3Kb 

given in BS 5950. 

4) Taking into account the horizontal stiffness of the frame, S , as 

theoretically calculated in Eq. (B.4) of the Appendix B, assess the relative stiffness, 

K3, through the code formula 

K. = k Sp but £ 2 (8.27) 

80£JX 
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where : h is the height of beam-column 

S is the horizontal force per unit deflection of the frame 

E is the modulus of elasticity of steel and 

Σ Kc is the sum of the stiffness I/L of the columns in the frame. 

The code determines the stiffness S using another simplified formula, where a wall 

panel is considered. Again, a program like the one developed for this research could 

be used to calculate the values Kl5 K2 and K3. 

5) The above value of K3 will be used for interpolation between two of the 

three graphs found in the codes, i.e. in either Figs. 24 and 25 ( K3 = 0,1 ), or 25 and 

26 ( K3 = 1,2 ). This procedure locates the effective length ratio K, through which, 

the first critical load of the beam-column is eventually obtained. 

Although this value for Pc, compared to the accurate one obtained through 

the program, is about 10% to 15% conservative, it can give fairly comparable results 

for the yield strength of the beam-column. 

6) Making use of the initially calculated imperfections, interpolate the 

PJP ratio, (equivalent to k-value of the preceding Section), between two adjacent 

charts relating the yield capacity of a beam-column with sway and/or non-sway 

imperfections, locating thus finally the first yield strength of the beam-column. 

In the case where an interaction between the two modes takes place, the 

code suggests a rather complicated empirical procedure to calculate the design load 

of the beam-column, using the linear bending moments arising for a practical level 

of imperfections applied for each mode. 

In order to highlight the difference in the results obtained through the 

procedure developed in this project and the corresponding of the codes, a strength-

result-comparison is cited in Appendix H. 



Chapter 9 

Conclusions and Recommendations 

9.1 General Discussion 

The present work has been concentrated on the buckling behaviour of plane 

rigid jointed steel frames for which sidesway is unrestricted and the plane of bending 

is coincided with the plane of buckling. As a result of the detailed theoretical and 

experimental study this two-degree-of-freedom buckling response has been clearly 

elucidated. A simplified design procedure for the prediction of the first yield load 

carrying capacity of frame columns has been proposed, where the first two critical 

loads for the sway and non-sway buckling modes are close together. 

Observations and conclusions derived in the course of this work are 

summarized in the following sub-sections. 

9.2 Theoretical Field 

As discussed in Chapter 2, the majority of the simplified approaches on the 

beam-columns' buckling behaviour rely upon procedures using empirical data, which 

are often lacking in crucial information on all the forms of imperfections (geometric 

or loading), usually present in all real structures. The design procedure therefore do 

not succeed in making explicit allowance for the effects of imperfections. 

In the present work the non-linear elastic response has been related to the 

linear one for both degrees of freedom. A total equivalent imperfection parameter 

for each mode (degree of freedom) has been defined, accounting for the effects of 

both the geometric tolerances adopted and all the loading based imperfections. This 

then allows complete specification of the non-linear elastic response of the column. 
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In Chapter 4 a method to calculate the non-linear contributions of the total response 

is presented, although the contributions from the linear response associated with the 

first antisymmetric (sway) and symmetric (non-sway) modes, dominate the total non­

linear response of the column. A simplified method to calculate these dominant 

contributions has been developed in Chapter 8. The results of this method, being 

dependant on the difference between the values of the first two critical loads, were 

in a very good agreement with those obtained from a complete non-linear elastic 

analysis for very small difference on the ^magnitudes of critical loads. 

For design purposes the non-linear elastic response is used to define the loads 

at which plastic failure is initiated. The interaction between elastic stability and 

material failure has been taken into consideration by the use of the total equivalent 

imperfection parameter through the Ayrton-Perry method, which was extended to a 

two-degree-of-freedom formula involving two imperfections and two critical loads 

as parameters. The superiority of the Ayrton-Perry imperfection approach, providing 

rational explanations on every aspect of the column's buckling behaviour, is at the 

end of the analysis obvious. 

Regarding the whole mechanism by which failure takes place, current design 

methodologies, even for single mode buckling, are not clear enough. They put a lot 

of emphasis on the slenderness of columns, suggesting a linear analysis, whilst they 

pay less attention to imperfections. Consequently the whole design procedure, leads 

generally to results which deviate from the actual magnitudes. This deviation, in the 

cases where the results have a conservative character, entails larger cross sections, 

consequently more material or less economy; on the contrary non-conservative 

results are lacking in safety. 

9.3 Experimental Field 

Past experimental work on a single buckling mode behaviour was to mainly 

establish the Ayrton-Perry formula based on an imperfection analysis; this work was 
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combined with an accurate measurement on every kind of imperfections. 

Throughout this project an extended experimental programme has been 

implemented on columns within small sub-frames subject to sidesway. The overall 

frame geometry was varying, covering a range of different stiffnesses and loading 

imperfection parameters. For each test two Southwell Plots were drawn, one for each 

mode. The conclusions derived from this study may in brief be summarised as: 

1) In most of Southwell plots, the points, corresponding to the obtained 

experimental data, were practically laying on a straight line. This validates the theory 

associated with both modes of Southwell plot. 

2) The close agreement (90-110%) on the values of the first two critical 

loads, obtained through theory and experiments 

a) establishes the theoretical developments on the Eigenvalue analysis 

along with the relative software, associated with the solutions 

b) demonstrates the validity of the Southwell plot, making it a useful 

and powerful tool for a quick, real answer on a critical load 

c) justifies and validates the extended form of the Ayrton-Perry formula, 

rendering it an important implement in the engineering design. 

3) The close values between the failure load levels (either for first yield or 

for full plasticity) predicted by the extended Generalized Ayrton-Perry method, with 

those obtained experimentally provide an interrelating bond between lab and theory. 

Such experimental conclusions, apart from any theoretical justifications, 

increase in general the confidence in theory. 

9.4 General Conclusions 

There are many parameters affecting the values of the first two critical loads 

in a beam column; in the main they can be represented in two forms: 
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1) the column geometry (length and cross section sizes) and 

2) the geometry of the surrounding the column frame, where, different lengths 

and cross section sizes of the beams and side columns compose different stiffness 

of the frame, either as rotational (symmetric, antisymmetric) or as translational. 

3) The presence of imperfections, even in very small quantities, is an 

inevitable event for the vast majority of beam-columns; from this point of view it 

causes a reduction on the axial load necessary to generate failure, either in the form 

of initiation of yielding or at full plasticity. This reduction, depending on the 

magnitude of each imperfection parameter, might be crucial, and, under a certain 

frame geometry where the first two critical loads are close to each other, may lead 

to an interaction between the first two buckling modes (sway and non-sway), which 

aggregates even more the whole situation. 

4) The ratio of the load necessary to cause failure over the squash load, 

(Pcl/Py or Pfy/Py), for a nearly perfect column, has a certain value for each frame 

geometry. This value can be affected by imperfections of both modes. In a three 

dimensional graph, where the above ratio is related against the different 

combinations of imperfections, the resulting points can be represented by an 

imperfection sensitivity failure surface. 

5) The location of first plasticity is mainly dependant on the relative 

magnitude of the sway and non-sway imperfections. A relatively larger sway 

imperfection tends to create first plasticity at or near the ends of the column, while 

a relatively larger non-sway imperfection, at or near the middle. The frame stiffness 

(symmetric - antisymmetric), might play a secondary role in the position of first 

plastic hinge. In any case, the location of first plasticity actually dictates the kind of 

failure (sway at/near the ends, non-sway at/near the middle). 

Therefore the presence of imperfections has to always be seriously taken into 

account for any buckling strength estimation. 
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9.5 Recommendations 

The present work has been focused on the buckling behaviour of plane rigid 

jointed steel-frames where there is a possibility of sidesway. The columns of such 

structures exhibit two degrees of freedom and the plane of bending is the same as 

that of buckling. It has been shown that the non-linearities arising from the 

contribution of the two first two critical modes, sway and non-sway, are the most 

dominant to the full non-linear response. 

In a buckling condition where the beam column, presenting a biaxial buckling 

response, is a part of a rigid jointed steel frame having the possibility of sidesway 

in one direction, each column has to be considered as such having three-degrees-of-

freedom; in this particular environment if the geometry and the boundary conditions 

of the frame permit a sway in both directions, then the column has to be considered 

as such having a four-degree-of-freedom behaviour. In this case the proposed two-

degree-of-freedom Generalized Ayrton-Perry formula has to be further extended by 

modifying the total equivalent imperfection parameter. 

This case, being potentially more important since it totally reflects the reality, 

might then be generalized to cover a multi-degree-of-freedom buckling phenomenon. 

In any case, for a more than two-degree-of-freedom buckling phenomenon, the 

boundary conditions arising from each degree-of-freedom have to be taken into 

account to form the governing differential equation. A research in this direction, 

apart from any theoretical difficulties arising from the complicated system of 

equations, might have a further experimental difficulty in building a proper test-rig 

which will accommodate the appropriate specimen and loading conditions. 
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Appendix A 

Theoretical Aspects and First-stage experimental 

Graphs 

A.l Plastic Buckling 

For intermediate or short columns, the assumption of fully elastic behaviour 

may not hold. Indeed, under the action of the applied axial load some fibres of the 

cross section - usually the extreme - will yield before the inception of buckling. 

Therefore, the only part of the cross section, able in resisting the additional applied 

force, will be its inner elastic core. Consequently, the Euler load will overestimate 

the strength of the column. 

To account for the effect of inelasticity55, two main theories were proposed: 

the double modulus theory and the tangent modulus theory. 

The double modulus theory, was developed by Considère6 in 1889, and is 

known as the reduced modulus theory. As a result of his experiments, Considère 

concluded that Euler's formula could hold to slender struts as long as the stresses 

at failure load of the member were less than the proportional limit σ of its material. 

When this stress is exceeded, in order to predict the strength of columns which 

buckle inelastically, he proposed the modulus of elasticity in Euler's equation to be 

substituted by a variable one. Under the assumption that the strut begins to bent only 

after the point of failure, he reasoned that if the proportional limit had been passed 

in direct compression, the stresses on the fibres of the concave side of the strut (up 

to the neutral axis of the cross-section), see Fig. A-l, would increase; so the tangent 

modulus, Et would govern the stress-strain behaviour of the fibres. However, the 
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SECTION A-A 

Δσ = Ε Δε 
1 t 1 

Δσ1-Ε(Δε1 

Stress Diagram 

Figure A-l Double (Reduced) modulus configuration 

stresses on the convex side, conversely, would decrease proportionally to the strain; 

so the elastic modulus, E, would govern the stress-strain behaviour of these fibres. 

As a result, an effective (reduced) modulus, Er, with a value somewhere between 

the above two, could be replaced in the Euler's equation. The critical load obtained 

on this concept is referred to as the reduced modulus load, given by 

π2ΕΙ Er P = !_ = -1 ρ 
r (KL)2 E E 

(A.1) 

The reduced modulus is a function of the geometry of the cross section and 

the tangent modulus. Therefore, it depends on both the shape of the cross section 

and the material property. The load Pr is always lower than the Euler because the 

ratio Er/E in Eq. A.l is always less than unity. It should be noted that this load, Pt 

, can only be reached if the column is artificially held in a straight position when the 

tangent modulus load (which fpllows in discussion), has been exceeded. This is the 

reason why the reduced modulus load can never be reached even if the slightest 
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geometrical imperfection is present. No theory was presented to determine the value 

ofEr. 

In the tangent modulus theory7'8, Fig. A-2, the axial load is assumed to 

SECTION A-A 

Stress Diagram 

Figure A-2 Tangent modulus configuration 

increase during buckling. The increment here is such, that, strain reversal, as in 

reduced modulus theory, is not occurring. Therefore, the tangent modulus, Et, 

governs the stress-strain behaviour of the entire cross section. The critical load 

obtained, known as the tangent modulus load, is given by 

%2EJ Et ρ = L = -Lp 
' (KL)2 E E 

(A.2) 

The tangent modulus load, Pt, unlike the reduced modulus load, Pr, is in­

dependent of the geometry of the cross section, depending only on the material 

property. The non-linearity of an average stress-strain behaviour for a steel column 

is due to the presence of residual stresses, which are arise as a result of the 

manufacturing process. When a short column is carrying an axial force, the fibres 

that have already residual compressive stresses will yield first. Later will yield the 
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fibres that have tensile residual stresses. Consequently, yielding process on the cross 

section will take place gradually. The slope of the stress-strain curve after first 

co 
CO e 
co 

Coupon test 
/ ' / 

) 

Short-column test 

m 

Strain e 

Figure A-3 Stress-strain curve for steel 

yielding, Fig. A-3, is the tangent modulus Et, of the member. Shown is also the 

stress-strain path of a specimen free of residual stresses, called coupon. This path 

is obviously an elastic-perfectly plastic behaviour. 

The load Pt actually marks the point of bifurcation of a perfectly straight 

inelastic column. It is lower from both the Euler and the reduced modulus load, and, 

from this point of view, it represents the lowest load at which bifurcation of 

equilibrium can take place. 
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A.2 Experimental Figures and Graphs 

All but the first three figures are some of the test results obtained from the 

frame shown in the following figure. Although the material, geometry and 

dimensions of the frame were kept constant, the loading conditions were varied, 

giving each time a different relation between deflections at both the top and the mid­

night of the central column against the corresponding load. 

Fig. A.2.1 Geometry and loading pattern of the frame 
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Appendix Β 

Theoretical Calculations of Frame-model 

B.l Calculation of Horizontal Displacement of the Frame due to 

Horizontal Load 

Taking advantage of the symmetry of the structure with respect to the A-ζ 

axis, along with the asymmetric loading, and the fact that the points A, Β and C are 

thus points of contraflexure, at which M = 0, we can make a cut at these points, 

considering the actual loading for the upper half, taking A, Β and C as pin-supports. 

Figure B-l 

Due to symmetry of structure and asymmetric loading the vertical reaction 

at Β is zero, while the horizontal reactions at A and C are equal. The vertical 
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reactions at A and C, forming a couple, are each PL 

2L· 

Taking the horizontal reaction, H, at B, as redundant, the horizontal reactions 

at A and C are thus (P-H)/2. 

The resultant diagram of real curvature, (χ), is shown in Fig. B-2. The sign 

is positive from the side where the inner extreme fibres are in tension. 

(P-H)LJ4EI 

(P-H)L3/4EI 
3 ' ^ " 3 HL3/4EI2 

(P-H)L3/4EI2 

(P-H)L3/4EI. 

Figure B-2 

6HL3/4 

6H/2 δΗ 

6HL3/4 

δ Η/2 

Figure Β-3 

Now, we can develop a virtual force system to find the redundant H. Indeed, 

if we put a virtual horizontal force δΗ at the support Β of the structure, make the 

bending moment diagram which results from the statically admissible reactions at 
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A and C, Fig. B-3, and combine this diagram with the corresponding ( χ ) by taking 

the product integrals for each member, once the displacement at Β is zero, we will 

have: 

[Virtual ext. work = ̂  Virt. force χ real displ. = 0 1 = [ J ^ Virt. internal work] 

or Σ, ^Fixui = 0 =' 5^ ίχ-òm-ds 

from which we obtain 

I ÒHL3 (P-H)L3 L3 ι 6HL3 HL3 L3 \ γ 

3 4 AEL 2 3 2 2£7j 2 2 EI2l 

(P~H)L· ( HL·^ 

4 ; 

ÒHL 3 λ 1 1 
2 2£7„ 

i/L, (P-//)L, 

y. 

Ôf/L, 
0 

Η = Ρ 
L3/2/3+3L2/2/2 

L2I2I3+L3IIX+3L2II2 

(B.l) 

For Ij = I2 = I3 = I and L2 = L3, it results 

Η - Ρ 
1+3 _ 4 p 

1+2+6 9 
(B.2) 

Following the same procedure, we develop a virtual force system to find the 

horizontal displacement u. If we put a virtual horizontal force δ Ρ = 2 
ÒP 

2 J 
at the 

joints where the horizontal displacement w is to be calculated, make the bending 

moment diagram (ôm2), as shown in Fig. Β-4, which results from the statically 

admissible reactions at A and C, (for convenience we take zero horizontal reaction 

at B), and combine this diagram with the corresponding one of real curvature, (χ), 

Fig. B-2, by taking the product integrals for each member we find similarly 
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δΗΙ_3/2 

ôHL3/4 

Figure B-4 

(P-H)LI PL2LI HL2LI 

4SEL 7AEL 16EL 
(B.3) 

Eventually the horizontal displacement takes the form 

PL; 
u = 

96EL 
2(1-Λ) + 4α_ 6ha 

ζ 5. KT. h". 

(B.4) 

where h = — ξ, = - ξ, = - a = — 
Ί Ί 

For ξ 9 = 1, ξο= 1, α = 1 and /ι 

one obtains u = 
upi4_ 
432EL 

It is obvious that this displacement must be doubled if the real system (whole 

structure) is considered. 
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B.2 Calculation of stiffness coefficient at the top-middle of the 

frame 

B.2.1 Rotational Stiffness 

a) Non-sway mode (symmetric case) 

Taking advantage of the symmetry of both the frame and loading with respect 

to horizontal axis, as shown in Fig. B-5, when the moment CA produces the unity 

of rotation at A, there is no rotation at G. 

Figure B-5 

The frame can be modeled as shown in Fig. Β-6. 

If Mc is the bending moment at C, this moment can be calculated through the 

virtual force method. The bending moment diagram of ABC, resulting in the real 

curvature (χ) diagram is drawn in Fig. B-7. 

If we apply at A a virtual moment ÒCJ2, make the bending moment 

diagram (ôm), resulting from the statically admissible reaction at C, and combine 

this diagram with (χ) by taking the product integrals for each member, since there 
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H = 0 A 

2 

mm?, 

VA 

11 
Β 

L3/2 

W////M i_jmQ 

S _ > Mc 

Figure B-6 

is no virtual work associated with the moment at C (9C=0), we will have 

6CA QA = fx-òm-dx (B.5) 

For Θ, = 1 , we obtain 

1 
1 = -

1 Mc 
Mc L3 

2 2EL 2 2EL 2E1, 2 
(B.6) 

To find M c we can similarly obtain another equation using the virtual force 

system, shown in Fig. B-8, where (ôm) is the bending moment diagram resulting 

from the statically admissible reactions of frame ABC after the application of the 

virtual moment ôMc at C. Since all the external virtual forces have zero real 

displacement, there is no external virtual work. Hence 

1 CA 1 Mr 
~--6Mr·—^--L· + -·ΟΜΓ·—£-

6 c 2EL 2 3 c 2EL 
•L· + ÒMr 

M„ L· 
2EI3 2 

•-i = 0 (B.7) 

M, 

12EL 6EL 

c ™c L^ 
+ ~ÄEJ3'T2 

(B.8) 

from which 
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M, δ C, 

2EÌ, 

2EI, 
ÔCJ 

2 V 2 

Mr 

2EI, 

(χ) (ôm) 

Figure B-7 

Mf 

2EI, 

2EÌ, L3/2 

Mr 

2EI, 

CiôMc 

(χ) 
(ôm) 

Figure B-8 

Mc = CA-
1 

2 + 3h 
(B.9) 
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where h = 

Substituting the value of Mc into B.6 we obtain the value of the stiffness 

coefficient CA for a non-sway mode 

2 + 3/z 
CA 4η 

1+2/z 
(B.10) 

where EL· 
η 

b) Sway mode (antisymmetric case) 

Similarly, taking antisymmetry of loading, putting the moment CA at A for 

a unity rotation, the original frame, shown in Fig. B-9, can be modeled as the frame 

Figure B-9 

shown in Fig. B-10, where the vertical reaction VA can be expressed in terms of the 

unknown horizontal reaction Η from the static equilibrium equation 

HL· yAL2 

(B.ll) 
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C'/2 
A θ = 1 
( \ A 

j-f ^Tzmf 

L3/2 

; Η 

VA 

Figure Β-10 

For this model, if from bending moment diagram, we draw the real curvature 

diagram and use the virtual force system in Fig. B-ll, the stiffness CA can be 

calculated in terms of the horizontal reaction H, which has been taken as redundant. 

C'A-HL3 

X c , 
2EI2 

1 L* 
1 

x HL3 

~~,2Elg 

==?HL3 

ψ2ΕΙ3 

Η 

Ls/2 

(x) 

HL3 

2L2 

Figure B-ll 

Η 

(ôm) 

Since there is no work of external forces, the equation obtained is 

1 HL3 CA 1 ÄX3 CA-HL3 1 #L3 HL3 L3 

2 2 2EL 2 3 2 2EL 2 + 3 2 2EL 2 
0 (B.12) 
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which yields 

235 

Η = -• 
C 

(2 + h)L· 
(B.13) 

(x) 

ΪΙΤΓΠΤΤΠΤίΤππτ^ 

β̂ • ι ν 
UA 2ΕΙ2 

L2 

CA •HL3 

2EI2 \ 

UHnnir • •Ι 
x HL3 

~,2EI2 

WÈ0HL3 
ψ2ΕΙ3 

oc; 

ôcA 

(ôm) 

Figure B-12 

Now, applying the virtual force system (δηι) showing in Fig. B-12, one more 

equation between CA and Η can be obtained, i.e. 

δ Ci 
ΘΑ = [χ-òm-dx , 

(Β.14) 

from which, for ΘΑ = 1, yields 

ÒCA Λ =

 ÒCA_ C'A L 1 , Ô C A CAHL3 ,L 1 àCA HL3 L3 ( B 1 5 ) 

2 2 2EI2
 2 2 2 2EI2

 2 + 3 2 2EI3 2 

or 

. ^4^2 (3L2/3 + L3I2)L3 (B.16) 
4£/„ 12£/3/2 



Appendix Β Theoretical Calculations of Frame-model 

Substituting the value of Η from Eq. B.13 we obtain 

2 + h 
12 η 

3+2A 

where h and η have the same values as before. 

236 

(B.17) 

B.2.2 Translational stiffness 
\ 

Sway mode (the joint moves due to horizontal force without 

rotation) 

If KA is the horizontal force necessary to produce the unity of horizontal 

displacement without rotation of node A, the original frame, shown in Fig. B-13, can 

be modeled as shown in Fig. Β-14. 

The values of MA , VA and KA can be related by the equation of equilibrium 

2 2 
(B.18) 

I2 A 
j —————_., _._,.. .——-"—• ι 

/ \ K A 

t ! / / | 
/ j 

t \ • 

i3 

1 KA \ 
1 • - - • • » • • -

i3 

C ,' 
t 

t 
t 

1 
1 

1 

\ 
Β 

1/2 

Figure B-13 

Making the real curvature diagram (χ) and combining this with the bending moment 
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diagram (ôm), resulting from the virtual force system shown in Fig. B-15, we take 

the virtual force equation 

KA/2 
MA 

1/2 

L3/2 \VA 

7, 

/ KA/2 

V, 

Figure B-14 

1 / MA ι , K,L· 

3 A EI2

 2 6 A 4EI2

 2 
(B.19) 

A 8 
(B.20) 

Figure B-15 
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KAL, 

6HAL3 

2L2 

™AL3 

Figure B-16 

If we now apply the virtual force system shown in Fig. B-16, the virtual work 

equation will give again 

ÒH 
, 1 iòH'AL,M' 1ÒHI

AL3KAL3J iòH'AL3KAL3L3 

EL 
-L,+ 

4EL V 4EI3 2 
(B.21) 

or 

i = MAL3L2 KALJL2 KALl 

6EL VIEL 24EL 
(B.22) 

Substituting MA from Β.20 into B.22 we obtain the value of KA 

KA = 48η 1 1 

3+2h τ2 

^ 3 

(B.23) 

where η and h keep the same values as before. 

All the above theoretical calculations have been independently verified 

through the F.E. computer program, used initially for numerical experiments, 
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where an excellent agreement was observed. 

B.3 Accurate calculation of stiffness coefficient at the top-middle 

of the real frame-model used for the experiments 

The frame model used for the experiments, needed to have the possibility of 

using different members (beams or columns). For this purpose it had to be builded 

through different end-blocks which were specially constructed to keep a monolithic 

connection throughout its members. Even though these end-blocks had the minimum 

possible length, they resulted in a substantial increase of the total frame stiffness. 

In the sections that follow a similar procedure to that developed in section 

B.2 shows only the main steps, which lead to an accurate calculation of the stiffness 

coefficient of the top-middle of the experimental frame-model. These calculations 

have come through an extended computational procedure made specially for this 

purpose. 

B.3.1 Rotational Stiffness 

a) Non-sway mode (symmetric case) 

Referring to the modeled sub-frame of Fig. B-6, the following system of 2 

equations in the χ and y unknowns has been created by combining the real curvature 

diagram (%s) in Fig. B-17 with each one of the statically admissible virtual force 

systems (ômls), (Ôm2s) shown in Fig. B-18. These diagrams have been made from 

the corresponding of Figs. B-7 and B-8, taking into account the geometry of the end-

blocks as shown in detail in chapter 6. The combination has been made by taking 

the product integrals of the above diagrams in the same way as shown in section 

B.2.1. 

In this system, are: 

χ : The rotational stiffness for the Non-sway (symmetric) modes of buckling in 

y kN*mm/rad; 
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x-j(x+y) 

p/2 = L3/2 

Figure B-17 

q-i2 

(ôm1s) 

r = l. 

(àm2s) 

Figure B-18 

: The bending moment at the right end of the beam (top end of side-column) 

in kN*mm; 

e : The Young's modulus of elasticity in kN/mm2; 

q : The second moment of area of beam's free part (without end-blocks) in mm4; 

r : -"- -"r side column's 

t : The whole length of beam (including the end-blocks) in mm; 
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ρ : -"- side-column -"- -"-

The length of the end-blocks has been taken 30 mm, while the total second 

moment of area (end-block + beam) for this part of length only, 15x555 mm4. This 

moment of area, tending to infinity, about corresponds to a 20 mm thickness of end-

block. The equations of the system are: 

(x-2*y)/(15*37*e)+(t-60)*(x-y)/(4*e*q)-(p-60):1:y/(4*e:1:r)=l and 

-(3*x-60/t*(x+y))/(15*(7.4)*e*t)+(3*(2*y-30/t*(x+y))-30/t*(3*y-60/t*(x+y)))/(15* 
t 

222*e)+(t-60)/(12*e*q)*(2*y-x-60/t*(x+y')*(l-30/t))+y/(15*37:1;e)+(p-60)*y/(4*e:f:r)=0 

A computerised procedure of the above system gave the solution: 

x=2220*e*q*(555*p*q:);tA2+2;1:(2*q*(2*r:,;(tA2-15:i:t+300)-8325*tA2)+185*r*(t-60):!: 

(tA~ 

2-30*t+900)))/(1110*p:1;q:i:(2*q*(tA2-30*t+600)+185:i;(t-60)*(tA2-30:1:t+900))+16*q 

A 2 * ~ 

(2*r*(tA2-45*t+900)-8325*(tA2-30*t+600))+4440*q*(t-60)*(r*(tA2-60*t+1500)-2775~ 

*(tA2-30*t+900))+1.02675* 10A5*r*(t-60)A4) and 

y=11100*e*q*r*(24*q*(t-20)+37*(t-60)*(tA2+60*t-1800))/(1110*p*q;1;(2*q*(tA2-3 

0~*t+600)+185*(t-60)*(tA2-30*t+900))+16*qA2H:(2;1:r*(tA2-45;1;t+900)-8325*(tA2-3 

0*t+~600))+4440*q*(t-60)*(r:i:(tA2-60:1;t+1500)-2775*(tA2-30:,:t+900))+1.02675*10 

A5*r*(t-60)M) 

which has been incorporated in the STIFFNESS subroutine of the FORTRAN 

program that solves the Eigenvalue Problem of the frame. 

b) Sway mode (antisymmetric case) 

Referring to the modeled sub-frame of Fig. B-10, the following system of 2 

equations in the χ and y unknowns has been created by combining the real curvature 

diagram (%a) in Fig. B-18 with each one of the statically admissible virtual force 
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x-f(x-y) 

y+j(*-y) 

x/2es 

P/2 = L3/2 

Figure B-19 

(ôm1a) 1 2a ' 

Figure B-20 

systems (ômla), (ôm2a) shown in Fig. B-19. These diagrams have been made from 

the corresponding of Figs. B-ll and B-12, taking into account the geometry of the 

end-blocks as shown in detail in chapter 6. The combination has been made by 

taking the product integrals of the above diagrams in the same way as shown in 

section B.2.1. 

In this system, are: 

χ : The rotational stiffness for the Sway (antisymmetric) modes of buckling in 
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kN*mm/rad; 

y : The bending moment at the right end of the beam (top end of side-column) 

in kN*mm; 

e : The Young's modulus of elasticity in kN/mm2; 

q : The second moment of area of the beam's free part (excluding end-blocks) 

in mm4; 

r : -"- -"- ^column's 

t : The whole length of beam (including the end-blocks) in mm; 

ρ : -"- side-column -"- -"-

The length of the end-blocks has been taken 30 mm, while the total second 

moment of area (end-block + beam) for this part of length only, 15x555 mm4. This 

moment of area, tending to infinity, about corresponds to a 20 mm thickness of end-

block. The equations of the system are: 

(3*x-60/t*(x-y*p))/(15*7.4*e*t)+(t-60)/(12*e*q)*((x-30/t:);(x-y*p)):i:(30/t+l)+~ 

(y*p+30/t*(x-y*p))*(2-30/t))+((y:f:p+30/t*(x-y*p))*(3-60/t)+y*p*(9-30/t-360/p+72~ 

00/pA2))/(15*222:lîe)+y*p*(p-60)/(12*e*r)*(l-60/p)A2=0and 

(l/(15*37*e)+(t-60)/(4*e*q))*(x+y*p)+y*p*((3-180/p+3600/pA2)/(15*lll*e)+(p-6 

0)/(12*e*r)*(l-60/p)A2)=l 

A computerised procedure of the above system gave the solution: 

x=2220*e*q*(185*pA3*q*tA2+2*pA2*(2*q*(2*r*(tA2-15*t+300)-8325*tA2)+185*r 

*(t-6~ 

0)*(tA2-30*t+900))-240*p:1:q*tA2*(r-8325)+4800:i:q*tA2*(r-8325))/(370*pA3*q*(2:1: 

q*(~ 

tA2-30*t+600)+185*(t-60)*(tA2-30*t+900))+pA2*(16*qA2*(2*r*(tA2-45*t+900)-83 

25*~ 
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(tA2-30:i;t+600))+4440:1:q:,:(t-60)*(r*(tA2-60*t+1500)-2775*(tA2-30*t+900))+102675 

*(t-60)A4)-480:i;p*q*(r-8325):1;(2:1:q*(tA2-30*t+600)+185;1:(t-60)*(tA2-30:i:t+900))+960~ 

0*q*(r-8325)*(2*q*(tA2-30*t+600)+185*(t-60)*(tA2-30*t+900)))and 

y=(-11100*e*p*q*r*(24*q*(t-20)+37*(t-6p)*(tA2+60*t-1800))/(370*pA3*q:1:(2:,;q*( 

tA2-30*t+600)+185*(t-60)*(tA2-30*t+900))+pA2*(16*qA2*(2*r*(tA2-45*t+900)-83 

25*(tA2-30*t+600))+4440*q*(t-60)*(r*(tA2-60*t+1500)-2775*(tA2-30*t+900))+102 

675*r*(t-60)A4)-480*p*q*(r-8325)*(2*V( t A 2-3 0* t + 6 0 0)+ 1 8 5*( t-6 0)*( t A 2-3 0* t + 9 0 

0))+9600*q*(r-8325)*(2*q*(tA2-30il:t+600)+185*(t-60)>i:(tA2-30:f:t+900)))) 

which has been incorporated in the STIFFNESS subroutine of the FORTRAN 

program that solves the Eigenvalue Problem of the frame. 

B.3.2 Translational stiffness 

Sway mode (the Joint moves horizontally without rotation) 

Referring to the modeled sub-frame of Fig. B-14, the following system of 2 

equations in the χ and y unknowns has been created by combining the real curvature 

diagram (xt) of Fig. B-21 with each one of the statically admissible virtual force 

systems (ômlt), (ôm2t) shown in Fig. B-22. These diagrams have been made from the 

corresponding of Figs. B-15 and B-16, taking into account the geometry of the end-

blocks as shown in detail in chapter 6. The combination has been made by taking 

the product integrals of the above diagrams in the same way as shown in section 

B.2.2. 

In this system, are: 

y : The translational stiffness KA for the Sway (antisymmetric) mode of buckling 

in kN/mm multiplied by p/4e; 

χ : The bending moment-at the left end of the beam (top end of central-column) 

in kN*mm divided by e\ 
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q 

r : 

t : 

Ρ 

The Young's modulus of elasticity in kN/mm2; 

The second moment of area of the beams' free part (without blocks) in mm4; 

side column's -"-

The whole length of beam (including the end-blocks) in mm; 

side-column , -"-

The length of the end-blocks has been taken 30 mm, while the total second 

moment of area (end-block + beam) for this part of length only, 15x555 mm4. This 

moment of area, tending to infinity, about corresponds to a 20 mm thickness of end-

block. The equations of the system are: 

y-f(x+y) 

x-j(x+y) 

Figure B-21 

(6*x-90/t*(2*x+y)+1800/tA2*(x+y))/(15*lll)+(t-60)/(6*q)*(2*x-y-60/t:I:(x+y)*(l-. 

30/t))-(3*y-60/t*(x+y))/(15*(3.7)*t)=0and 

-p*(3*x-60/t*(x+y))/(15*(7.4)*t)+p*(t-60)/(12*q*t)*(t*(2*y-x)-60:i:(x+y)*(l-30/t)) 

+p/(15*222)*(3*y;i:(2-30/t)-30/t:i:(x+y)*(3-60/t))+p*y/(15*lll)*(3-60/p*(3-60/p))+ 

p*y*(p-60)/(12*r)*(l-60/p)A2=0.5 
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(ôm1f) it (ôm2t) 

Figure B-22 

A computerised procedure of the above system gave the solution: 

x=5550*p*q*r*(24*q*(t-20)+37:1:(t-60)*(tA2+60*t-1800))/(370:1;pA3:1:q*(2:l:q*(tA2-30*~ 

t+600)+185*(t-60)*(tA2-30*t+900))+pA2*(16*qA2:i:(2*r*(tA2-45*t+900)-8325:1;(tA2-

30-

*t+600))+4440*q*(t-60)*(r:1:(tA2-60*t+1500)-2775*(tA2-30:1:t+900))+1.02675*10A5 

(t-60)A4)-480*p*q*(r-8325):1;(2:liq*(tA2-30*t+600)+185*(t-60)*(tA2-30:1:t+900))+9600~ 

*q*(r-8325)*(2*q*(tA2-30*t+600)+185*(t-60)*(tA2-30*t+900)))and 

y=2220*p*q*r*(2*q*(tA2-30*t+600)+185*(t-60):i;(tA2-30*t+900))/(370*pA3*q*(2* 

q*(tA2-30*t+600)+185*(t-60):1:(tA2-30*t+900))+pA2*(16*qA2*(2*r:t:(tA2-45*t+900)-

8325*(tA2-30*t+600))+4440*q*(t-60)*(r*(tA2-60*t+1500)-2775*(tA2-30*t+900))+l 

.02675*10A5*r*(t-60)A4)-480*p*q*(r-8325)*(2*q*(tA2-30*t+600)+185*(t-60)*(tA2 

-30:1:t+900))+9600:1:q*(r-8325)*(2:1;q*(tA2-30*t+600)+185*(t-60)*(tA2-30*t+900))) 

which has been incorporated in the STIFFNESS subroutine of the FORTRAN 

program that solves the Eigenvalue Problem of the frame. 
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B.4 Example of Calculation of Maximum Deflection due to Sway 

Loading Imperfections for the Case where Both Ends are 

Fixed Rollers 

B.4.1 Elastic Critical Load Analysis 

Considering the column of the figure below, since there is not lateral 
i 

load, the general differential equation is' 

EIwiv + Pwn = 0 (B.24) 

,2 Ρ 
or, substituting k - — , 

EI 

(B.25) 

(B.26) 

w

iv + k2w" = 0 . 

The general solution of this equation is 

w = AsinL· + BcosL· + Cx + D 

The constants in this equation and the value of critical load are to be found from the 

end conditions of the column. At x=0, the 

deflection and the bending moment are zero 

due to symmetry. The first condition gives 

Β + D = 0 ( B · 2 7 ) 

while from the second condition 

w" = -k2AsmL· - k2Bcoskx ( B · 2 8 ) 

yields k2B = 0 and therefore 

Β = D = 0 . (B.29) 

Figure B-23 
Since the ends are fixed, a t x = ± — isw / = 0: 

2 
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i.e. 

C = -kAcosk- (B.30) 

Again at χ = ± — the shear force is zero. Hence 
2 

W" = -k3Acosk- = 0 (B.31) 
2 

\ 

The constant A has here the meaning of a maximum deflection. Since k is not zero 

(Pi 0), it remains 

COSA:- = 0 (B.32) 
2 

from which a zero value for C is obtained and 

kL ^ QtDE (j = l,2,..) (B.33) 
2 2 

k2 = £*sQt*l <i = l,2,..) (B.34) 
£/ I 2 

So the critical load corresponding to the first mode of buckling (i=l) is 

Ρ = ÉR (B.35) 
cl L2 

The deflection curve of the column can be expressed from the general 

solution for the found value of k, i.e. 

w.(x) = Asin(2i~1)7T χ (i = 1,2,..) (B.36) 



Appendix Β Theoretical Calculations of Frame-model 249 

B.4.2 Deflection due to Horizontal Loading 

At the idealised model of the following picture, if we put at the top 

support an initial horizontal force, H, along with the corresponding -H at the bottom 

one, a moment HL/2 will appear at each end. The bending moment diagram along 

the height of the column is linear. The differential equation for the deflection curve 

is: 

El^L =i-M = ~xH . (B.37) 
dx2 

Figure B-24 

After two integrations the deflection curve becomes 

EIw = -H— + C.x + C, . (B-38) 
6 1 2 

The boundary conditions, i.e. at χ = 0 and χ = ±— the corresponding deflection and 

slope are w = 0 and w = 0, result in the constants C{ and C2 taking the values 

C2 = 0 and C, = ™- (B.39) 
2 l SEI 
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Therefore the equation that expresses the deflection curve is 

w = 
Η (*2 

2EI 

Ll 1 3 
X X \ 

4 3 

(B.40) 

B.4.3 Theoretical Deflection through Amplitude Factors 

According to amplitude factors of loading imperfections, as developed in 

Section 4.9, the expression for the ith factor of loading imperfection is given from 

Eq. (4.54), i.e. 

η M 
W; = 

T£fLEI$'l(x)wn"(x)dx 

M J° 

(BAI) 

where 

. , . . (2ί-1)π 
Φ4(Λ:) = sin-^ — χ (B.42) 

is the characteristic function of the ith critical mode and 

w\x) -
Η 

2EI 

L2 x3 

3 j 
(B.43) 

is the deflected shape of the column due to loading imperfections. The maximum 

deflection, occurring at the ends of the column, is 

; = HL3 

'(I) = 2AEI • 
(B.44) 

The second derivatives of Eqs. (B.42) and (B.43) 
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.// (2ί-1) 2π 2 . (2ΐ-1)π 
φ ; = - - — s i n - — χ 

L2 L 
(B.45) 

ι" Η 
w = χ EI 

reform Eq. (B.41) into 

L/2 
HP<*„ ^ ( 2 » - 1 ) π χ sin- — x d x 

< = -k £ / '' L_ = Κ {BM) 
Lß P2 / » · IN D 

1,2 EI L 

Simplifying separately the numerator and denominator of Eq. (B.46) we 

obtain 

HP. 
Numerator: Since is constant, we call the rest of numerator 

EI 

fLI\x}Lm^tpLxdx\ = A , (B.47) 

which, using the known relation between two functions 

fvdu = uv- fudv , (B ·4 8) 

becomes 
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-xL (2ί-1)π 
cos- —x 

(2ί-1)π 

i/2 „ L 

/ 
-i/2 -i/2 (2ι'-1)π 

(2ϊ-1)π , 
cos- —xdx 

2 
cos 

(2ί-1)πΙ 

(2ί-1)π 2L 

^ < 2 ί - 1 ) π ( - ^ 
2 I 2 

cos ^ 

L2 . (2ϊ-1)π 
sin- — Λ; 

(2ί-1)π 

Lß 

2 „ 2 
(2ι'-1)ζπ 

(B.49) 

i/2 

(2ΐ-1)2π2 

2 L 2 ( - r r 1 

(2ΐ-1)2π2 

sin 
(2ι-1)π(Ζ,Ν 

£ \2) (2ϊ-1)2π 2 _ 2 

. (2i-l)7t 
sin- — Γ 2J 

The numerator of Eq. (Β.44) therefore becomes 

Ν = 
UP a 2L 2(-iy+ 1 

El ( 2 i - l ) V 
(B.50) 

Denominator: Similarly, since —- is constant and sin2a -
EI 

1-cos2a 
we call 

i/2 

/ ( 
-i/2 

l - lcos 2 < 2 ' -»%U = fi 
2 2 L 

(B.51) 

Hence 

Β = - -
L 1 

2 2 2(2ί-1)π 

. 2(2ί-1)π 
s in— — χ 

Lß 

-Lß 

L 
2 

(B.52) 



Appendix Β Theoretical Calculations of Frame-model 2 5 3 

and the denominator becomes 

Ρ2 τ 
D = f_*.k (B.53) 

EI 2 

Since Ρ . = , Eq. (B.46) takes eventually the form 

w / = (-if'x 4L"H . (B.54) 
(2i-l)V£/ 

Taking only the contribution of the first critical mode, we find 

/ 4#L 3 HL: 

\νλ = π*ΕΙ 2435EI 

which, in percentage of the total theoretical one, is 

4HL3 

w2 = χ 

34 π4ΕΙ 

(B.55) 

^ ^ x l O O = ^ x l O O = 98.55% (B.56) 
HL3 π 4 

24EI 

Similarly the contribution of the second critical mode is 

ι 1 AHL 
- - 0.012 w/ , (B.57) 

and therefore it can be negligible. 
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Appendix C 

Part 1 

Theoretical Background on Beam-columns 

\ 

C.l.l Introduction 

It is known from the elementary theory of bending, that deflections and 

stresses in beams are directly proportional to the applied loads. This condition 

requires that the change in shape of the beam due to bending must not affect the 

action of the applied loads. The presence of only lateral loads, for example, on the 

beam in Fig. 1-la, Ql and Q2, cause small deflections ôt and δ2 and slight changes 

in the vertical lines of action of the loads. This will only have an insignificant effect 

on the moments and shear forces. It is possible therefore, to make calculations for 

deflections, stresses, moments etc., on the basis of the initial configuration of the 

beam. If Hooke' s law holds for the material, the deflections are proportional to the 

acting forces and the principle of superposition is valid; i.e. the final deformation is 

obtained by summation of the deformations produced by each individual force 

separately. 

The analogous situation is entirely different when both axial and lateral loads 

act simultaneously on the beam (Fig. 1-lb). The bending moments, shear forces, 

stresses and deflections in the beam will not be proportional to the magnitude of the 

axial load. Their values will be dependent upon the magnitude of the deflections 

produced and furthermore, they will be sensitive to even slight eccentricities in the 

application of the axial load. 
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Q i Q Q 1 

Β A 

Q ; 

Β 

Ί °2 

(a) ( b ) 

Fig. 1-1 

Beams which support lateral loads while simultaneously subject to axial 

compression are known as beam-columns. In this Appendix beam-columns of 

symmetrical cross section with various conditions of support and loading will be 

analyzed25. 

C.1.2 Differential Equations for Beam-columns 

Consider the beam in Fig. l-2a which is subjected to an axial compressive 

force Ρ along with a distributed lateral load of intensity q(x) which varies with the 

distance χ from the end of the beam. An element of length dx between two cross 

sections taken normal to the originally straight axis of the beam is shown in Fig. 1-

2b. On this element the lateral load may be considered as having constant intensity 

q over the distance dx and is assumed to be positive when in the direction of the 

positive y axis, downwards. The shearing force V and the bending moment M acting 

on the sides of the element are assumed positive in the directions shown. 

The relations among load, shearing force and bending moment are obtained 

from the equilibrium of the element in fig. l-2b. Summing forces in the y direction 

we obtain 

or 

V+qdx+(V+dV)=0 

dx 
(1-1) 
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Taking moments about point η and assuming the angle between the axis of 

the beam and the horizontal is small, we have 

M+qdx~+(V+dV)dx-(M+dM)+P—dx = 0 . 
2 dx 

If terms of second order are neglected, this equation gives 

v_ dM pdv 

dx dx 
(1-2) 

If the effects of shearing deformations and shortening of the beam axis are 

neglected, the expression for the curvature of the axis of the beam is 

EI = - Μ , 
dx2 

(1-3) 

where EI is the flexural rigidity of the beam in the plane of bending, i.e. the xy 

plane which is assumed to be a plane of symmetry. Combining Eq. (1-3) with 

Eqs.(l-l) and (1-2) we can express the differential equation of the axis of the beam 

in the following alternative forms: 
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E A pit,, y (1.4) 
dx3 àx 

and EI + P = q . (1-5) 
dx4 dx2 

Equations (1-1) to (1-5) are the basic differential equations for bending of beam-

columns. If there is no axial force P, these equations reduce to the usual equations 

for bending by lateral loads only. i-

C.1.3 Beam-column with a Concentrated Lateral Load 

Consider in Fig. 1-3 a beam of length / on two simple supports carrying a 

single lateral load Q at distance c from the right end. If Q was acting alone, the 

bending moments could be found readily by statics. The axial force Ρ in this case 

however, causes bending moments which cannot be found until the deflections are 

determined. The beam-column is thus statically indeterminate, and we have to solve 

first the differential equation for the deflection curve of the beam. 

The bending moments for the left and right-hand portions of the beam in Fig. 

1-3 are respectively 

M=Q^x + Pv M= Q^-^-(l-x)+Pv , 
/ / 

and therefore, using Eq. (1-3), we obtain 

(a) 

El 

EId2* = -
dx2 

dzy _ Q(l-

Qc 

/ 

c)(/-

-Pv 

x) Pv . (b) 
dx2 I 
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,2 Ρ 
If we introduce the notation k - — , 

El 
(1-6) 

Eq. (a) becomes 
dx2 + k2v = 

Ell 

The general solution of this equation is 

Qc 
ν - A cosfcc + Β sinfcc - -^— χ 

\ PI 
(c) 

Fig. 1-3 

In the same manner the general solution of Eq. (b) is 

ν = C cos&x + D sinfcc - ~ — -
PI 

(d) 

The constants of integration A, B, C, and D will be determined from the 

conditions at the ends of the beam as well as at the point of application of the load 

Q. Since the deflections at the ends of the bar are zero, we obtain 

A = 0 C = Dtmkl (e) 

At the cross section where the load Q is applied, the two portions of the deflection 

curve, as given by Eqs. (c) and (d), have the same deflection and a common tangent. 

These conditions require respectively 
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fîsinfc(Z-c) - Qi(l-c) = D[sìnk(l-c)-tanklcosk(l-c)}- ^-(l-c) 
PI PI 

Bkcosk(l-c)- @£ = Dk[cosk(l-c) + tanklsmk(l-c)]+ 2ίίΛ , 

from which 

D Qsmkc „ Qsmk(l-c) ,~ 
tf υ - - . (I) 

Pksmkl * Pktmkl 

Substituting the values of the constants from (e) and (f) into Eqs. (c) and (d), we 

obtain the following equations for the two portions of the deflection curve: 

v = — smkx - -^— χ O^x^Z-c (1-7) 
Pksmkl PI 

ν - g™*gzg> sinfc(Z-x) - g ( / - c ) ( / - x ) l-cixil (1-8) 
Pksmkl PI 

It is seen that Eq. (1-8) can be obtained from Eq.(l-7) by substituting I - c for c 

and I - χ for x. 

Differentiation of Eqs. (1-7) and (1-8) gives 

dv Qsmkc , Qc n , 
— = — coskx - -̂ — O^x^Z-c 
dx PsinfcZ pi 

(1-9) 

j v _ Q s i n / : ( Z - c ) c o s f c ( / x ) + Q ( Z - c ) ^ ^ ( M ( ) ) 

dx Psinkl PI 

^ v = __Qfesin^sin/fcc 0 ^ , _ c ( M 1 ) 

dx2 Psinkl 

<Pv = _ Qksmk(l-c) s i n k ( l x ) ^ ^ ( 1 _ 1 2 ) 

dx2 PsinfcZ 
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If the load Q is applied at the centre of the beam, the deflection curve is 

symmetrical; thus we consider only the portion to the left of the load. The maximum 

deflection in this case, is obtained by substituting χ = c = 1/2 in Eq. (1-7), which 

gives 

·-<•*--£(rH)-
Using the additional notation 

i. 

kl Ι Ρ 

2 2 Μ EI 

Eq. (g) can be simplified to 

(1-13) 

δ = QU. 3^*-"> = oi l (u) . (1_14) 
4SEI M

3 4SEI 

The first factor on the right -hand side of this equation is the deflection obtained if 

the lateral load Q acts alone. The second factor, %{u), gives the influence of the 

axial force on the deflection δ. 

When Ρ is small, the quantity u is also small [Eq. (1-13)]. The factorχ(κ) 

then approaches unity, as can be shown by using the series 

u3 2u5 

tanw - u + — + +... 
3 15 

if we retain only the first two terms. It is also seen that χ(«) becomes infinite when 

u approaches π/2. When u = π/2, we find from Eq. (1-13) 

Ρ - ^-^- . (1-15) 
I2 
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3 

u (rad) 

Fig. 1-c 

4 / \S 6 

4.493 4.712 

Therefore, if the axial load approaches the limiting value given by Eq. (1-15), even 

the smallest lateral load will produce considerable lateral deflection. The limiting 

value of this compressive load is called the critical load and is denoted by Pcr. For 

the critical value of axial load, the quantity u from Eq. (1-13) takes the form: 

π 
u = — 

2 \ 
(1-16) 

Thus u depends only on the magnitude of the ratio P/Pcr. 

The slope of the deflection curve at the end of the beam can be found from 

Eq. (1-9), if we substitute χ = 0 and c = 1/2 

Q_{ 
2P{ 

1 

cos klfl 
1 

Ql2 2(1-cos«) _ Ql2 

16EI « c o s « 16EI 
λ(«) (1-17) 

Again, the first factor is the slope when the lateral load Q acts alone at the centre 

of the beam while the second factor is the effect of the axial load P. 
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0.3125 

3 / 4 | 5 

3.888 4.712 
u (rad) 

Fig. l-d 

The maximum bending moment can be obtained from Eq. (1-11) 

Mm = - E I 
max 

'd2v\ QkEL kl Ql tan« = ^ tan— = — — 

WLI2 2P 2 4 u 

if we multiply the bending moment produced by the lateral load by the factor 

(tan«)/w. The value of this factor, shown in Fig. 2-3, as well as the previous 

trigonometric factors X(u) and χ(«), approaches unity as the axial load becomes 

smaller and smaller and increases indefinitely when the quantity u approaches π/2, 

i.e. when the axial load approaches the critical value given by Eq. (1-15). 

C.1.4 Beam-Column bending by Couples 

Having the solution for a single concentrated lateral load Q (Fig. 1-3) we can 

now obtain the equation of fhe deflection curve for the case when a couple is 

applied at the end of the beam. This is feasible if we assume that the distance c in 
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Fig. 1-3 decreases to a finite very small value, and, at the same time, Q is 

increasing, so that the product Qc remains finite and equal to Mh, we obtain the 

couple Mh acting at the right end of the beam (Fig. 1-4). The deflection curve can 

then be derived from Eq. (1-7) if we substitute sinke = kc and Qc = Mb 

ν -
Mb (sw.L· _ x'" 

Ρ i sinkl I, 
(1-18) 

Fig. 1-4 

The small angles of rotation θα and Qb at the ends of the bar are considered 

as positive when the ends rotate in the direction of positive bending moment as 

shown in Fig. 1-4. Taking the derivative of Eq. (1-18), we obtain 

a {dxj 
Mb( 

x=Q sinkl 

1 1 η Mbl 3 

/ J 6EI u \ sin2w 2u 
(1-19) 

Θ, 
'dv\ =

 Mb ( kcoskl 1 

dx ) x = l Ρ \ smkl I 

Mbl 3 1 1 

3EI 2u [ 2u tan2w 
(1-20) 

It can be seen that the known expressions Mbl/6EI and Mbl/3EI, which represent 

the angles produced by the couple Mb acting alone, are multiplied by trigonometric 

factors which express the influence of the axial load Ρ on the angles of rotation at 

the ends of the beam. These factors 
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2u = kl 
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Fig. 1-a 

3 ( 
φ(ΐί) = -

1 1 

sin 2« 2M , 
(1-21) 

ψ(κ) = 
2M 

1 1 

2M tan2M; 

(1-22) 

approach unity when u approaches zero and increase indefinitely as u approaches 

rr\ e„ Θ 
Mh ρ fa 

1±<2XL- -±L· 
e" \P 

ΤΊΓ 

(a) (b) 

Fig. 1-5 

π/2, as shown in Figs. 1-a and 1-b. 
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Fig. 1-b 

Now if two couples Ma and Mfo are applied at the ends A and Β of the bar 

(Fig. l-5a), the deflection curve can be obtained by superposition. Indeed, from 

Eq.(l-18) we can take the deflections produced by the couple Mb. Then by 

substituting Ma for Mb and (I - x) for χ in the same equation, we find the deflections 

produced by the couple Ma. Adding these results together, we can obtain the 

deflection curve for the case in Fig. l-5a 

Ρ {sinkl l)+ Ρ 

sink(l-x) l-x 

I sinkl 
(1-23) 

This type of loading may occur when two eccentrically applied compressive forces 

act as shown in Fig. l-5b. Substituting Ma = Pea and Mh = Peh in Eq. (1-23), we 

obtain 

ν = e. 
( sinAac χ 

sinfc/ / « a 

smk(l-x) l-x 

sinkl I 
(1-24) 
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The angles θα and Qb, giving the rotation at the ends of the bar, in Fig. l-5a, 

are obtained from Eqs. (1-19) and (1-20). Then by superposition, we have 

Ml M J 
θ - — ? - ψ ( α ) + —— φ(κ) 

a 3EI 6EI 
(l-25a) 

MJ Ml 
6 fc= — - Ψ 0 0 + -^~b(u) 

b 3ΕΓ 6EI 
(l-25b) 

In the case of two equal couples Ma = Mh = M0, we obtain from Eq. (1-23) 

Mr 

ν 
Ρ cos 

M0P : 

SEI M C O S « 

(ir1 Ir] k l 

cos \k— kx - cos— 

I 2 2 

f 2ΜΛΛ 
cos u - COS u 

(1-26) 

The deflection at the centre of the beam can be found from this equation by 

substituting χ = 1/2 

x , , Mo12 2(1-cos«) * V 2 . , , 

SEI M COS M SEI 
(1-27) 

We can find the angles at the ends by taking the derivative of Eq. (1-26) and 

substituting χ - 0. The result is 

Θ Λ = Θ Α = 
a ο 

dv' MJ ol tan« 
ßx)x=0 2EI u 

(1-28) 

The maximum bending moment, occurring at the middle of the bar, is 

obtained from the second derivative of Eq. (1-26) 
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Mm=-EI 
/ ,2 \ 

dr 
= M0secM . (1-29) 

This equation can be used in a bar with eccentrically applied compressive forces 

(Fig. l-5b), if both eccentricities are equal. When the axial load Ρ is small in 

comparison with its critical value, the quantity u is small and sec u can be taken 

equal to unity, which means that the bending moment can be assumed constant 

along the length of the bar. As u approaches π/2 and Ρ approaches Pcr, sec u 

increases indefinitely. At such values of Ρ the slightest eccentricity of the applied 

load produces a considerable bending moment at the centre of the bar. 

C.1.5 Beam-columns with Built-in Ends 

Equations (1-7) and (1-8) show that for a given axial load on a beam-column 

the deflections are proportional to the lateral load Q. At the same time the relation 

between deflections and axial load is more complicated, since this load enters into 

the trigonometric functions containing k. The fact that deflections are linear 

functions of Q indicates that the principle of superposition, which is widely used 

when only lateral loads act on a beam, can also be applied in the case of combined 

action of lateral and axial loads, but in a somewhat modified form. One can see 

from Eqs. (1-7) and (1-8) that if we increase the lateral load Q by an amount Qh we 

can obtain the resultant deflection by superposing the deflections produced by the 

load Qj on the corresponding deflections produced by the load Q, provided the same 

axial load acts on the beam. 

It can be shown that the method of superposition can be used when several 

lateral loads act on the compressed bar. The resultant deflections can be obtained by 

superposition of the deflections produced separately by each lateral load which acts 

in combination with the axial, load. 

On the basis of this statement we can write the equation of the deflection 
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M, 
Q 

M, 

· < -
f 
• y 

6 

Ò-'-τ 
Fig. 1-6 

curve of the bar for any number of lateral loads; we can also solve various statically 

indeterminate problems. Take, for instance, a lateral load Q acting on a 
\ 

beam-column with built-in ends in Fig. 1-6. 

The statically indeterminate reactive moments at the ends are found from the 

conditions that the slopes at the ends are zero. Therefore, for each end of the beam, 

the rotation produced by the lateral load Q acting alone with hinged ends [found 

from one of the corresponding equations (1-9) or (1-10)], plus the rotation from the 

action of both moments [found from equations (1-19) or (1-20) respectively], must 

be zero. These conditions, for the beam shown in Fig. 1-6, can be expressed by the 

equations 

Ml M.l 

θ β = e f t i + -é-i|r(u)+
 b 

3EI 6EI 
φ(α) = 0 

Ml MA 
Qu- Θ„, + - ^ - ; Φ ( Μ ) + —?-ψ(ίΟ = 0 J0b 6ΕΙ 3ΕΙ 

(1-30) 

through which the end moments Ma and Mb can be obtained. 

C.1.6 Beam-columns with Elastic Restraints 

Considering a more general case of statically indeterminate problem, let us 

take the beam-column in Fig. 1-7. The beam is connected to vertical bars at A and 

Β and is loaded laterally by the load Q and axially by the force P. If Qa and Qb are 
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respectively the angles of rotation at the ends A and Β of the beam, there will be 

as a result, couples Ma and Mh which we can express in the form 

M= - α θ β , M, βθ, (1-31) 

The moments and angles of rotation are positive in the directions shown in Fig. 1-7. 

The factors α and β are coefficients which define the degree of fixity at the ends 

of the beam and are called coefficients of end restraint. Numerically this coefficient 

is the reactive moment at that end when the rotation is equal to unity. The value of 
\ 

the coefficient may vary from zero (pinned end) to infinity (built-in end). If EIa is 

the flexural rigidity of the vertical bar at A which bar is assumed to have hinged 

ends, the relation between the angle of rotation θα and the moment Ma is 

Mb 
θ = - ° 

12EI 

and thus 
12EI 

a = 

Considering the bending of the bar AB, the angles θα and db can be 

determined from the equations 

Ml M J 
Θ Λ = θ α , + Τ^Ψ(") + 

3EI 6EI 
φ(κ) 

Ml MJ 
β* - θο* + ^ Φ ( " ) + ^ Ψ ( " ) 

6EI 3EI 

(1-32) 

where again the angles θ ^ and dQb are calculated for hinged ends of the beam. 

Finally , combining the Eqs. (1-31) and (1-32) we obtain the following equations for 

the moments at the ends 
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α 
M, 

Ml ΜΛ 

3£7 6EI 
MJ Ml 

ofc 3£/ 6EI 

(1-33) 

Fig. 1-7 

Solving these equations for the moment Ma gives 

θ Oct 

M„ = 

— + Ψ(Μ) 

β 3ΕΓ 
+ θ, Oft 

Ζ 
6£7 

Φ(«) 

— + Ψ (κ) 
α 3£7 

— + Ψ(") 
β 3ΕΙ 6ΕΙ 

ΦΟ) 

(1-34) 

The solution for Mfc is obtained similarly and has the same expression in the 

denominator. 

Using equations (1-33), we can consider various conditions at the ends of the 
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beam-column. Taking, for instance, α = 0 and β = <*>, w e obtain the case where the 

left end of the beam is free to rotate while the right end is rigidly built-in. In this 

case M = 0 while the moment at the end B, from the second of Eqs. (1-33), is 

3EI%h 

Mh= - (1-34) 

By taking α = β = °°, we have the case of a beam-column with built-in ends, 

and Eqs. (1-33) reduce to Eqs. (1-30). * 
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Part 2 

Elastic Buckling of Columns and Frames 

C.2.1 Differential Equation for Determining Critical Loads 

So far the critical load for an ideal column was found by beginning with the 

differential equation (1-3), which expresses its curvature in terms of the bending 

moment. An alternate method is to begin with Eq. (1-5) 

Ρ j d\ D d2v 

EI + P = q . 
dx4 dx2 

In determining critical loads of a bar, however, there is no lateral load; hence, the 

former equation has the form 

EI^+P^ = 0 , 
dx4 dx2 

or, introducing k2 = Ρ f EI , (a) 

^ + k2^- = 0 . (2-1) 
dx4 dx2 

The general solution of this equation is 

ν = Asinkx + Bcoskx + Cx + D . (2-2) 

The constants in this equation, as well as the value of the critical load, will be found 

from the end conditions of the bar. A few basic cases will now be considered. 

I) Column with hinged ends. In this case the end conditions of the bar 

are zero deflection and bending moment at both ends; i.e. 



Α ρ ρ e η dix C - Part 2 Elastic Buckling of Columns and Frames 273 

d2v n 

ν = = 0 
dx2 

1/2 

( b ) 

Fig. 2-1 

at χ = 0 and χ = I . 

1/3 

( c ) 

Applying these conditions to the general solution [Eq. (2-2)], results 

Β = C = D = 0 , sin/c/ = 0 

and therefore kl = ΐπ (i = 1,2,..) . (b) 

The values of critical loads are determined from Eq. (b) in combination with (a). For 

i = 1 the lowest critical load of equation (1-15) is obtained. Higher values of 

critical load are obtained for / = 2, 3,.. from the same equation. The shape of the 

deflection curve is expressed by the equation 

ν = Asmkx - i4sin ιπχ 
(e) 

where A is a constant which has an undetermined amplitude of the deflection. Fig. 

2-1 shows the different buckled shapes for i = 1, 2, 3. 

2) Column with one end fixed and the Other Pinned. For such bar, shown 

in Fig. (1-2), fixed at the base and pinned at the upper end, a reactive force is 
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Fig. 2-2 

developed when lateral buckling 

occurs. Its direction is determined by 

noting that it must oppose the reactive 

moment at the fixed end. The end 

conditions are 

ν = 

ν = 

dv 

dx 
d2v 

dx2 

= 0 

= 0 

at χ = 0 

at χ = I 

Combining these conditions with the 

general solution (2-2), results the 

following system of equations for the 

constants: 

Β + D = 0 
Ak + C = 0 
CI + D = 0 

Asinkl + Β coskl = 0 

These equations will be satisfied if A = B = C = D = 0, where, from Eq. (2-2), the 

resultant deflection vanishes and we have the straight form of equilibrium. In order 

to have a buckled shape of equilibrium, we need a solution other than the trivial one. 

From the first three equations, solving for A in terms of Β and substituting into the 

last one we obtain 

Bsmkl + B c o s M = 0 

kl 
or tanfcZ = kl (2-3) 

This is a transcendental equation which can be solved graphically. 

The curves in Fig. 2-3, showing tan kl as a function of kl, are asymptotic to 

the vertical lines kl = π/2, 3π/2,.. since for these values of kl, tan kl becomes 
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infinite. The roots of Eq. (2-3) are thus the intersection points of the above curves 

with the line y = kl. The smallest root, corresponding to point A, is kl = 4.493 and 

the resulting critical load is 

Per-
20.19 EI 

I2 

π2ΕΙ 

(0.699 Ο2 

(2-4) 

This critical load is the same as for a pinned bar having a reduced length of 0.699/. 

3) Fixed end Column. In the case, that both ends of the bar are fixed, 

the end conditions are 

dv Λ ν = — - 0 
dx 

at χ - 0 and χ - I 

These conditions, combined with the general solution, give the following system of 

equations: 
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B + D = 0 
Ak+C= 0 

A sinkl + Β coskl + Cl +D = 0 
Akcoskl - Bk sinkl + C = 0 

(c) 

In order to have the possibility of curved forms of equilibrium, i.e. non-trivial 

solution, the determinant of the coefficients of system (c) must be equal to zero. 

Thus 

0 
k 

sinkl 
k coskl 

1 "• 

0 
coskl 

- k sinkl 

0 
1 
/ 

1 

1 
0 
1 
0 

= ο , 

which furnishes the equation 

2(coskl - 1) + klsinkl = 0 (d) 

Substituting coskl = l-2sinz(kl/2) and sinkl = 2sin(kll2)cos(kl/2) in (d) and 

rearranging, results in 

. klikl kl . kl) 
sin — — cos sin — 

2 2 2 2 
= 0 . (e) 

One solution of this equation is obtained from 

kl sin — = 0 or kl = 2ι'π , and therefore 
2 

Pcr = 
4ί2π2ΕΙ 

I2 
(2-5) 

Using Eqs. (c) and noting that sinkl = 0 and coskl = 1 whenever sin(kl/2) - 0, 

we find the following values for the constants: 
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A = C = 0 and Β = -D 

which eventually give the equation of the deflection curve 

„ ( li-KX Λ \ 
ν = Β \ cos 1 (2-6) 

4n2EI 
For / = 1, we obtain the lowest critical load Ρ r = , and the column has 

the symmetrical buckled shape in Fig. 2-4b. 

Ο 

1/2 

Ρ 

( a ) 

A second solution of Eq. (e) is obtained if we set the term in parentheses 

equal to zero; the resulting equation is 

. kl kl 
tan— = — , 

2 2 

which, as in case (2), gives the, lowest root kl/2 = 4.493, and therefore 
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P , - ^ ^ - (2-7) 
Γ 

This critical load corresponds to the antisymmetric buckling shape, shown in Fig. 

2-4c. However, this value has no practical interest once it is larger than the previous 

one of symmetrical pattern. 

C.2.2 Critical loads obtained from Beam-column Theory 

In many cases, instead of the differential equation of the deflection curve, the 

problem of calculating critical loads can be tackled by using results obtained from 

theory of beam-columns. In section 1.3 it was shown that for certain values of axial 

load Ρ the deflections and bending moments tend to increase indefinitely. Those 

values of compressive force are evidently critical values. 

As an example let us determine the critical loads for a bar with elastically 

restrained ends (Fig. 1-7). When the bar bears a lateral load, the moments at the 

ends are obtained from Eqs. (1-33) 

Mn Ml MA 
— = Θ - + —S-iK«) + — - Φ ( κ ) 

α 0a 3EI 6EI 
Mh MA Ml 
—- = %h + — Ψ(") + —^-ΦΟΟ 

β ob 3EI 6ΕΓ 

(a) 

where α, β are coefficients of end restraint [see Eq. (1-31)], 0Oa and 90b are the 

angles of rotation at the ends due to the lateral load only, while the functions φ(ί(\ 

and \\f(u) are given by Eqs. (1-21) and (1-22) respectively. The moments Ma and jty 
b 

acting at the ends of the bar are positive in the direction shown. The value of jty 

obtained from Eq. (1-34) is 
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Θ, θα 

Ma = 

1 l • < ̂  
— + Ψ(«) 
β 3ΕΓ 

+ θ, Ob 6Ε7Φ ("> 

1 l . ί \ 
α 3£7 

1 ' . , Ν 

— + ψ(Μ) 
β 3£7 

/ 

6ΕΙ 
ΦΟ) 

and therefore becomes infinitely large when the denominator is zero. Thus the 

equation for determining the critical condition is 

1 l . t \ 

α 3EI 
1 

— + 

/ 

β 3EI 
ψ (it) 

/ 

6ΕΙ 
ΦΟ) = 0 . (2-8) 

For particular values of α and β, this equation can be solved for u and the critical 

load calculated. 

In the particular case of symmetry, shown in Fig. 2-5a, we have 

« = ß > %a = %b> Ma= Mb 

and therefore Eqs. (a) are replaced by the single equation 

Κ Ml Ml 
(2-9) 

If we solve this equation for Ma and set the denominator of the resulting expression 

equal to zero, we obtain the equation for the critical load 

— + ψ(«) + — Φ ( Μ ) = 0 . 
α 3ΕΓ 6EI 

If now we substitute the expressions for ψ(κ) and φ(«) from Eqs. (1-21) and (1-

22), noting that tan« = ( 1 - cos2w)/sin2w, we can write this equation in the form 

tan M m 
al (2-10) 
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In this equation u may vary between π/2 and π . The value π/2 corresponds to 

α = 0, which means that the ends of the bar are free to rotate, and the critical load 

is given by Eq. (1-15) for the fundamental case. When the ends of the bar are fixed, 

α becomes infinite; then the value of u is π, and the critical load is 

Pc = 4π2ΕΙ/12. For intermediate values of α Eq. (2-10) can be solved using the 

graph of function (tan*)/χ in Fig.2-3. 

For the case of antisymmetrical loading (Fig. 2-5b), we have 

« = β , θ, θα θ, Ob ' Μ_ Μ, 

The critical load is then determined by the equation 

— + ψ (u) φ (u) = 0 
α 3EI 6EI 

or 
u 

1 1 

u tanw 

6EI 

al 
(2-11) 

The critical loads obtained from this equation correspond to antisymmetric buckling 

shapes. The equation can be solved for any value of a from the graph in Fig. 1-b 

(on page 10), which give the function \|/(u), since the expression on the left-hand 

side is the function ψ but with u in place of 2u. 

For α = 0 we have the case of pinned ends; then u = π and the critical load 

is Ρ - 4π2ΕΙ/12, corresponding to the buckling pattern in Fig. 2-lb. 
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For α = 0° we have the case of fixed ends, u = 4.493, and the critical load 

is given by Eq. (2-7). 

C.2.3 Buckling of Frames 

The method described in the preceding section will be used now for 

considering the buckling of frames, once each member of a framework with rigid 

joints is in the same condition of a bar with elastically restrained ends. Consider as 

an example, the frame ABCD in Fig. 2-6, which is symmetrical horizontally and 

vertically. The columns AC and BD are 

compressed by axial loads P, while the 

whole frame is braced horizontally. The 

Β columns begin to buckle when the load Ρ 

reaches its critical value. This buckling is 

accompanied by bending of the two 

horizontal bars AB and CD which 

exercise reactive moments at the ends of 

the vertical bars and tend to resist 

buckling. The moments at the ends are 

— proportional to the angles of joints; the 

columns can thus considered as bars with 

p· 2_6 elastically restraint ends. 

The coefficient of restraint α at 

the ends of the columns will be found from a bending consideration of the horizontal 

bars having equal and symmetrical couples at the ends. If EIh is the flexural rigidity 

of the horizontal bars, then 

Λ 
ΓΛ 

0 

Elb 

i 1 
\ 1 

JElc E l c | 

/ El b \ 

h 
1 1 
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Since the columns buckle in a symmetrical pattern, the critical load can be 

obtained from Eq. (2-10). Denoting by EIC the flexural rigidity of the columns, this 

equation becomes 

tan« ê t A ,, ^ 

u lb I 

and the critical load can be obtained from this equation for each particular case. 

\ 

If the frame consists of four identical bars, then = - 1 . The lowest 
u 

kl 
root of this equation is u = 2.029 = — , and the critical load is 

= 16.47 EI 
cr = / 2 

If the horizontal bars are absolutely rigid, then Ib= °°, and the right-hand side of (b) 

becomes zero. Then tan u = 0, u = π, and 

= 4 π 2 £ Ι 

which is the case of column with fixed ends. Finally if Ib = 0 we obtain u = π/2 

π2 EI 
and Ρ = , as for a column with pinned ends. 

I2 

In Fig. 2-7 is shown a buckled frame corresponding to antisymmetric 

buckling shape. In this case the critical load is found from Eq. (2-11) by substituting 

6EL 
a = , which is the corresponding coefficient of the horizontal bars by 

h 

antisymmetric couples at the ends. Then Eq. (2-11) becomes 
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\ 

I__L 
u tanw, r, ι 

(c) 

Critical loads for this buckling mode are larger than 

those for the symmetrical mode and hence are not 

usually so important. 

Again, if the frame in Fig. 2-7 consists of four 

i d e n t i c a l b a r s , E q . (c) b e c o m e s 

(1 

u 

1 

v u tanlu 
The lowest root of this 

equation is u - 3.3805 = kl 
and hence 

pcr = 
45.71 EI 

I2 

If the horizontal bars are absolutely rigid, the right-hand side of equation (c) 

becomes zero. Therefore 

1 1 kl 
- = 0 , tanw = u , u = — = 4.493 
u tanw 2 

and 
80.75 El 

I2 

Finally, the case of antisymmetric buckling for a column with pinned ends is 

obtained if Ih = 0. Then ψ(κ) = «>, u = kl/2 = π (see Fig. 1-b), and 

Per-
4π2ΕΙ 

I2 

If the flexural rigidities of the two horizontal bars of the frame in Fig. 2-6 are 
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not the same, the end conditions for the compressed column are no longer the same 

and the critical load will be obtained from Eq. (2-8). 

C.2.4 Buckling of Frames with Sway 

In the previous discussion it was assumed that the ends of the compressed 

columns do not displace laterally. The case we consider now in Fig. 2-8, is a frame, 

whose compressed vertical columns are 

free to move laterally at the top. If the 

frame has a vertical axis of symmetry, 

each vertical column can be considered 

separately as a compressed bar 

rotationally free at the lower end and 

elastically restrained at the upper end. If 

EIh and EIC are the flexural rigidities of 

the bar and columns respectively, taking 

a coordinate system of axes as shown in 

the figure, the differential equation of 

the deflection curve of the bar is 
Fig. 2-8 

EI 
d2v 

dx2 
Pv 

By putting k2 = P/EIc , the solution of this equation, satisfying conditions at the 

lower end, is 

ν = AsmL·. (a) 

The angles 0C and 6b at the upper end must be equal. Since the horizontal bar is bent 

by two couples M, each equal to P(y)x=l, the coefficient of restraint at the ends of 
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the bar is α = 6EIb/h . The condition at the upper end, Μ = α θ , where θ the 

angle of rotation at B, becomes therefore 

dv 

dx 

h 

x = ; 6EL 
•P(A-i 

or , combining with expression (a), k cos kl = 
Phsinkl 

6ΕΐΓ 

\ 

In the general case, Eq. (b) can be expressed in the form 

h I kltm(kl) = 6 - ~ 

(b) 

(c) 

The critical value of the load Ρ can be 

found for any numerical value of the 

ratio Ibl/Ich . If the horizontal bar is 

absolutely rigid, then EIb = °° , and we 

obtain 

. ,, ,, π „ π EI 
tanfc/ = 00 kl= — Ρ = 

c r -il 

Fig. 2-9 

Al· 

If all three bars of the frame are 

identical, we obtain kltankl - 6 ,from 

which, through the graph in Fig. 2-3, we 

obtain 

kl = 1.35 pcr = 
I.S22EI 

I2 

In fig. 2-9 a frame similar to that in Fig. 2-6 but subjected to sway is 
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presented. It is symmetrical with respect to horizontal and vertical axes and its upper 

part presents exactly the same properties and response with the previous one. 

Therefore, keeping the same notation apart from the length L = 21 of the columns, 

we can rewrite equation (c) as 

(I> 

u 
( 

tan I k
k\.6!iSJR.3lik 
2 V h Ih 

I C e 

(d) 

which express the general case of the above frame subject to sway, if both ends of 

the columns are elastically restrained. As before, if the horizontal bars are absolutely 

rigid, EIb = oo, and we obtain 

, 2 2 Per' 
πζΕΙ 

Assuming that all four bars of the frame are identical, we obtain 

k— tan \k— 
2 { 2) 

= 3 

from which, through the same graph, it results 

k- = 1.193 
2 

Pcr = 
5.693 EI 
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Appendix D 

Graphs of Parametric Study 

\ 

The graphs given on the next pages are symbolically chosen to show various 

capabilities of the computer program listed in Appendix E. This program solves the 

Eigenvalue Problem for a beam-column considered as a part of a frame for which a 

sway-mode is possible. 

Many of graphs are accompanied from the content of the corresponding files, 

where the results, in the form of coordinates or else, have been directly allocated 

through the program. 

Attention has been paid so that some necessary information concerning the 

graph be attached to it. 
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5α 
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Buckling shape of the central column 
when the contribution of the first 4 
critical modes is considered. 
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ει 
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Fig. D-5 

ε 

I 

t 
-4 

40O, 

35a 

3oa 
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sa 

-0.2 

Bend. Moment Diagr. of the central 
column, when the contribution of the 
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P1 - 1.161 kN, P2 =1.281 kN 
Ρ3 = 3.069 kN, P4 = 5.255 kN 
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12-46.45 mm 4 
13-98.72 mm 4 Ρ - 0.5 kN 
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Bend. Moment kN mm 

Fig. D-6 
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Elasto - Plastic Path 

% 

I - 234mm (£>, - 6mm) 
I \ = 371.58mm4 (b2 = 7mm) 
Ι ξ = 554.67mm 4 (b3 = 8 mm) 

Pes" 8.583 kN 
PCN= 10.190 kN 

24.321 kN 
41.871 kN 

Pty" 8.05 kN 
Ρ = 8.39 kN 

ph 

12\ 15 18 21 24 \27 30 33 

1262 M (kNmm) 25.89 

Fig. D-7 

Elasto - Plastic Path 

% 

29.25 mm4 (h = 3 mm) 
69.33 mm4 (b 2 - 4 mm) 
135.42mm 4 (b3 = 5mm) 

PCN= 1.378 kN 
1.502 kN 
3.357 kN 
5.569 kN 

L-L -380mm 

L -286mm 
2 

Pcs = 
Pes' 
•CN~ 

Elastic failure 
load = 1.378 kN 

4 5 6 7 

M (kNmm) 

Fig. D-8 
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The following results are a typical output of the 

EV-Problem and correspond to the Fig. D-7. 

NO. OF PROPERTY SETS = 3 

MEM L b d A I Ζ Y.str 

1 

2 

3 

Solut 

1 

2 

3 

4 

380.00 

286.00 

380.00 

kL 

5.083 

5.538 

8.556 

11.227 

6.00 

7.00 

8.00 

13.00 

13.00 

13.00 

78.00 ' 234.00 

91.00 371.58 

104.00 \ 554.67 

78.00 

106.17 

138.67 

EIGENVALUES & EIGENVECTORS 

Pc 

8.5825 

10.1897 

24.3206 

41.8712 

Cl 

1.00 

1.00 

1.00 

1.00 

0.265 

0.265 

0.265 

C2 delta theta_A Mode-Case 

1.461 -11.114 

-0.391 0.000 

-0.464 -2.814 

-0.792 0.000 

-0.004 

0.006 

-0.013 

0.023 

* Sway 

Non-Sway 

* Sway 

Non-Sway 

First YIELD Load = 8.046 kN 

First HINGE Load = 8.393 kN 

SQUASH Load = 20.670 kN 

The following results are an output of the Elasto-Plastic 

Analysis and correspond to the Fig. D-7. 

Mfy Mph Non-lin.El.Mom. Location X 

0.000 

0.413 

0.827 

20.670 

20.257 

19.843 

31.005 

30.993 

30.955 

0.000 

0.153 

0.315 

0.000 

0.000 

0.000 
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1.240 

1.654 

2.067 

2.480 

2.894 

3.307 

3.721 

4.134 

4.547 

4.961 

5.374 

5.788 

6.201 

6.614 

7.028 

7.441 

7.855 

7.958 

8.010 

8.035 

8.042 

8.045 

8.046 

8.046 

8.046 

8.253 

8.356 

8.382 

8.389 

8.392 

8.393 

8.393 

8.393 

19.430 

19.016 

18.603 

18.190 

17.776 

17.363 

16.949 

16.536 

16.123 

15.709 

15.296 

14.882 

14.469 

14.056 

13.642 

13.229 

12.815 

12.712 

12.660 

12.635 

12.628 

12.625 

12.624 

12.624 

12.624 

12.417 

12.314 

12.288 

12.281 

12.278 

12.277 

12.277 

12.277 

30.893 

30.807 

30.695 

30.559 

30.397 

30.211 

30.000 

29.765 

29.504 

29.219 

28.909 

28.574 

28.215 

27.830 

27.421 

26.987 

26.528 

26.409 

26.349 

26.319 

26.312 

26.308 

26.307 

26.307 

26.307 

26.062 

25.938 

25.906 

25.899 

25.895 

25.894 

25.893 

25.893 

0.488 

0.674 

0.875 

1.092 

1.327 

1.586 

' 1.871 

2.189 

2.546 

2.953 

3.424 

3.978 

4.646 

5.479 

6.567 

8.097 

10.592 

11.541 

12.142 

12.477 

12.565 

12.610 

12.621 

12.623 

12.624 

17.082 

22.461 

24.711 

25.363 

25.712 

25.804 

25.850 

25.873 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

7.600 

7.600 

7.600 

7.600 

7.600 

7.600 

7.600 

15.200 

30.400 

30.400 

30.400 

38.000 

38.000 

38.000 

38.000 
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8.393 

8.393 

8.393 

8.393 

8.807 

9.220 

9.634 

10.047 

10.460 

10.874 

11.287 

11.701 

12.114 

12.527 

12.941 

13.354 

13.768 

14.181 

14.594 

15.008 

15.421 

15.835 

16.248 

16.661 

17.075 

17.488 

17.902 

18.315 

18.728 

19.142 

19.555 

19.969 

20.382 

12.277 

12.277 

12.277 

12.277 

11.863 

11.450 

11.036 

10.623 

10.210 

9.796 

9.383 

8.969 

8.556 

8.143 

7.729 

7.316 

6.902 

6.489 

6.076 

5.662 

5.249 

4.835 

4.422 

4.009 

3.595 

3.182 

2.768 

2.355 

1.942 

1.528 

1.115 

0.701 

0.288 

25.893 

25.893 

25.893 

25.893 

25.377 

24.836 

24.270 

23.680 

23.065 

22.425 

21.760 

21.070 

20.356 

19.616 

18.852 

18.064 

17.250 

16.411 

15.548 

14.660 

13.747 

12.810 

11.847 

10.860 

9.848 

8.811 

7.749 

6.663 

5.551 

4.415 

3.,254 

2.069 

0.858 

25.885 

25.891 

25.892 

25.893 

38.000 

38.000 

38.000 

38.000 
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Variable : I. 

CO 
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This file of results is a typical one 

NO. OF PROPERTY SETS = 3 

MEM L b d A I Ζ Y.str 

1 

2 

3 

380.00 

286.00 

380.00 

3.00 

4.00 

1.00 

13.00 

13.00 

13.00 

39.00 

52.00 

13.00 

29.25 

69.33 

1.08 

19.50 

34.67 

2.17 

0.265 

0.265 

0.265 
ϊ ί ί ΐ ί ί ^Z ^C ^Z ^C ^C ^Z Sk îÎ£ ϊ ΐ ί vi* jL· * t *L· ^ jL· ^ ^ jl^ *N *N ^ ^lj ^ *!> »1> *!* *1> »1> fc[* *1* *1* *I> fcif ̂ ίζ ^L* J * ^ jL· ^ ^ J ^ j k jfe jfc ^1; >ti >!; >Z? ^ >!; j l ; 5I; >!; ^ ^ ^ jfc ^ ^ ^ 

Run 1) EIGENVALUES & EIGENVECTORS ( 12/11 = 2.37 ) 

1 

2 

3 

4 

2.976 

5.698 

8.581 

11.477 

0.3677 

1.3484 

3.0578 

5.4693 

1.00 

1.00 

1.00 

1.00 

-0.083 

-0.301 

-0.449 

-0.606 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

-2.219 -0.001 * Sway 

0.000 0.005 Non-Sway 

-2.024 -0.010 * Sway 

0.000 0.018 Non-Sway 

Elastic FAILURE Load = 0.368 kN 

*For the same set of data, but breadth of cross-section, b3 = 1.50 mm, are: 

A3 = 19.50 mm2, 13= 3.66 mm4, Z3 = 4.88 mm3, 13/11=0.13 

Run 2) EIGENVALUES & EIGENVECTORS ( 12/11 = 2.37 ) 

Solut kL 

1 3.253 

2 5.701 

3 8.600 

4 11.480 

Pc 

0.4394 

1.3495 

3.0712 

5.4729 

Cl 

1.00 

1.00 

1.00 

1.00 

C2 

0.056 

-0.300 

, -0.437 

-0.604 

delta 

-2.731 

0.000 

-2.080 

0.000 

theta_A 

-0.001 

0.004 

-0.010 

0.018 

Mode-Case 

* Sway 

Non-Sway 

* Sway 

Non-Sway 
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Elastic FAILURE Load = 0.439 kN 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

*For the same set of data, but breadth of cross-section, b3 = 2.00 mm, are: 

A3 = 26.00 mm2, 13 = 8.67 mm4, Z3 = 8.67 mm3, 13/11 = 0.30 

Run 3) EIGENVALUES & EIGENVECTORS ( 12/11 = 2.37 ) 

Solut kL Pc Cl C2 \ delta theta_A Mode-Case 

1 3.680 0.5624 1.00 0.276 -3.704 -0.002 * Sway 

2 5.705 1.3515 1.00 -0.297 0.000 0.004 Non-Sway 

3 8.634 3.0952 1.00 -0.418 -2.182 -0.010 * Sway 

4 11.487 5.4794 1.00 -0.599 0.000 0.018 Non-Sway 

Elastic FAILURE Load = 0.562 kN 

ϊ ϊ ί ϊΐί bli ^C ΐ ί ί ^ ΐϊ£ ite ΐΐί t̂> *L· ^ J * *L· * ! ; ^ *1; * ! ; *L· ^ *J^ *L· ^ <U y^ ^N *1; ^ ^ ^ *!> y^ ^ <U ^ jl* ^ ^ * ^ j!> *1* ^ ^ *1> *!> ^ U> *!> y> y> *1; ^ ^ ψ Ĵ> Ĵ> vĵ  ^ xU ^ ^ ^ 

*For the same set of data, but breadth of cross-section, b3 = 2.50 mm, are: 

A3 = 32.50 mm2, 13 = 16.93 mm4, Z3 = 13.54 mm3, 13/11 = 0.58 

Run 4) EIGENVALUES & EIGENVECTORS ( 12/11 = 2.37 ) 

Solut kL Pc Cl C2 delta theta_A Mode-Case 

1 4.187 0.7280 1.00 0.576 -5.278 -0.002 * Sway 

2 5.711 1.3545 1.00 -0.294 0.000 0.004 Non-Sway 

3 8.682 3.1298 1.00 -0.390 -2.338 -0.010 * Sway 

4 11.498 5.4894 1.00 ,-0.592 0.000 0.018 Non-Sway 

First YIELD Load = 0.720 kN 
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Elastic FAILURE Load = 0.728 kN 

* »J* »J> »1* *lrf *1* *1* *1* *1> *1^ *L* O* *1* >1* ^ «J* »Χ» Ά* *L· yl* *L· *1* *1> *1< *A* *J> >L· «Ĵ  *l* ^L· «A* *X» *1* *1* *1* *1* »l* *t* *l£ ^t* ^Ji *l·» »J> >Ĵ  *1* *1* *1- *J* *1- *J* *l? ^1* *A* *J-· *1* *1* vt* *i* · !* *l* *1* *1* 
i p i p *p i p i p * p J p * p »ρ ί ρ ί ρ * p * p ""ρ *p * p * p *p ^p *p *p * p *T* * p * p *p * p J p ^p *p * p ' p * p *p *T* *T* 'Γ* 'Τ* *T* * P ·τ · *T* ·Τ· ·** ' ν ' *ϊ* *Τ* *Ί^ 'Γ' *Τ· ' Ρ ·Τ· ' Ρ *ρ * ρ *ρ *Ρ ' ρ ' ρ »ρ ' ρ 

*For the same set of data, but breadth of cross-section, b3 = 3.00 mm, are: 

A3 = 39.00 mm2, 13 = 29.25 mm4, Z3 = 19.50 mm3, 13/11 = 1.00 

Run 5) EIGENVALUES & EIGENVECTORS ( 12/11 = 2.37 ) 

Solut kL Pc Cl C2 I delta theta_A Mode-Case 

1 4.692 0.9141 1.00 0.980 -7.648 -0.003 * Sway 

2 5.720 1.3585 1.00 -0.289 0.000 0.004 Non-Sway 

3 8.741 3.1728 1.00 -0.356 -2.541 -0.010 * Sway 

4 11.511 5.5026 1.00 -0.583 0.000 0.018 Non-Sway 

Elastic FAILURE Load = 0.914 kN 

*For the same set of data, but breadth of cross-section, b3 = 3.50 mm, are: 

A3 = 45.50 mm2, 13 = 46.45 mm4, Z3 = 26.54 mm3, 13/11 = 1.59 

Run 6) EIGENVALUES & EIGENVECTORS ( 12/11 = 2.37 ) 

Solut kL Pc Cl C2 delta theta_A Mode-Case 

1 5.139 1.0968 1.00 1.554 -11.207 -0.003 * Sway 

2 5.730 1.3632 1.00 -0.284 0.000 0.004 Non-Sway 

3 8.807 3.2206 1.00 -0.319 -2.777 -0.009 * Sway 

4 11.528 5.5182 1.00 -0.572 0.000 0.017 Non-Sway 

Elastic FAILURE Load = 1.097 kN 
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*For the same set of data, but breadth of cross-section, b3 = 4.00 mm, are: 

A3 = 52.00 mm2, 13 = 69.33 mm4, Z3 = 34.67 mm3, 13/11 = 2.37 

Run 7) EIGENVALUES & EIGENVECTORS ( 12/11 = 2.37 ) 

Solut kL Pc Cl C2 delta theta_A Mode-Case 

1 5.507 1.2593 1.00 2.445 1-16.830 -0.004 * Sway 

2 5.740 1.3682 1.00 -0.278 0.000 0.004 Non-Sway 

3 8.873 3.2692 1.00 -0.283 -3.028 -0.009 * Sway 

4 11.545 5.5352 1.00 -0.560 0.000 0.017 Non-Sway 

Elastic FAILURE Load = 1.259 kN 

This file of results is a summary of the previous one 

13/11 Per 1 Per 2 Per 3 Per 4 

0.04 0.368 1.348 3.058 5.469 

0.13 0.439 1.350 3.071 5.473 

0.30 0.562 1.352 3.095 5.479 

0.58 0.728 1.355 3.130 5.489 

1.00 0.914 1.358 3.173 5.503 

1.59 1.097 1.363 3.221 5.518 

2.37 1.259 1.368 3.269 5.535 
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Appendix E 

Experimental Data and Results 

\ 

In this appendix the experimental data and results are presented in a way that 

they might be used in the future as reference. 

The way in which the results are presented is similar with that used in 

Chapter 7, where, three different groups of buckling behaviours, the elastic, the 

elasto-plastic and the plastic collapse were listed for each frame geometry. 

Each experimental presentation consists, due to lack of space, of three only 

pages. 

On the first page the date number and the group of experiment are standing 

as title, while the full experimental data along with the results of Southwell plots for 

both modes are tabulated. 

The Southwell Plots are provided along with the critical loads and total 

equivalent imperfections for both modes on the second page. These two pages are 

similar to what in Chapter 7 is presented as a sample. 

On the third page a load vs both displacements diagram is shown for both the 

loading and unloading stages. The theoretically obtained results for the imperfections 

that result from Southwell Plots are also presented on the same page for comparison 

reasons. 
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T e s t : 18ocl 
E l a s t i c B u c k l i n g 

E x p e r i m e n t a l D a t a 

L o a d 

Ρ 

k N 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.3 

3.6 

3.8 

4 

4.2 

4.4 

4.6 

4.8 

5 

5.2 

5.4 

5.6 

5.8 

6 

Loading 

T o p 

reads 

670 

670.5 

672.5 

675.5 

679 

684 

689 

695 

705.5 

716.5 

726.5 

739 

752.5 

764 

775 

787.5 

799.5 

814 

830 

844.5 

863.5 

879 

897 

921 

945 

Mid 

reads 

1360 

1360.5 

1360.5 

1360.5 

1362 

1363 

1363.5 

1365 

1364.5 

1363.5 

1363 

1362.5 

1361.5 

1360 

1358 

1357.5 

1356 

1355 

1352.5 

1351 

1348 

1347 

1345.5 

1341 

1337 

Unloading 

Top 

reads 

670 

676 

682.5 

692 

700 

710 

718 

728.5 

740.5 

7522 

765 

780 

795 

805 

817.5 

829 

841 

856 

873 

887 

903 

915.5 

925 

932 

945 

Mid 

reads 

1362 

1364 

1365 

1365 

1365.5 

1367 

1368 

1368 

1368.5 

1368.5 

1368 

1367 

1365 

1364.5 

1362 

1360.5 

1359 

1356 

1352 

1347 

1344 

1340.5 

1340 

1340 

1337 
JL 

S o u t h w e l l P l o t 

S w a y M o d 

δ, 

100 

m m 

0.000 

*< 0.005 

0.025 

0.055 

0.090 

0.140 

0.190 

0.250 

0.355 

0.465 

0.565 

0.690 

0.825 

0.940 

1.050 

1.175 

1.295 

1.440 

1.600 

1.745 

1.935 

2.090 

2.270 

2.510 

2.750 

àt 

100P 

mm/kN 

0.000 

0.017 

0.042 

0.061 

0.075 

0.093 

0.106 

0.119 

0.148 

0.172 

0.188 

0.209 

0.229 

0.247 

0.263 

0.280 

0.294 

0.313 

0.333 

0.349 

0.372 

0.387 

0.405 

0.433 

0.458 

Non-Sway Mode 

δ -δ,/2 

100 

m m 

0.000 

0.008 

0.018 

0.033 

0.065 

0.100 

0.130 

0.175 

0.223 

0.268 

0.313 

0.370 

0.428 

0.470 

0.505 

0.563 

0.608 

0.670 

0.725 

0.783 

0.848 

0.915 

0.990 

1.065 

1.145 

δ , " »/Σ 

1 0 0 Ρ 

mm/kN 

0.000 

0.025 

0.029 

0.036 

0.054 

0.067 

0.072 

0.083 

0.093 

0.099 

0.104 

0.112 

0.119 

0.124 

0.126 

0.134 

0.138 

0.146 

0.151 

0.157 

0.163 

0.169 

0.177 

0.184 

0.191 
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«ο 

Southwell Plot 
Sway Mode 

-0.5-

-1-

-1.5-

-2 

P., = 8.58 kN 
CS 

ξ tnt = - 1.25 mm tot 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

δ/Ρ (mm/kN) 

«ο 

Southwell Plot 
Non - Sway Mode 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

Ô/P (mm/kN) 
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S 

6l 

b.th 

& 

4.S 

Ar 

3.& 

3-

2.S 

2 

1.5-

1-

0.5-

Load vs. deflection at top & middle 
Loading * * t0P x 

x * π δ middle Δ 
χ * 

Χ 5Κ 

Χ 5Κ 

Χ * 

χ * 

χ * , 

χ * 

χ χ 

χ χ 

χ κ 

χ* * 

χ * 

χ * 

χ * 

Unloading 

Ώ Δ 

D Δ 

D ώ 

D Δ 

• Δ 

D Δ 

D Δ 

Π Δ 

Π Δ 

D Δ 

D Δ 

D Δ 

• Δ 

Χ » 3 Δ 

Χ Μ * . 

3 -2.5 -2 -Ϊ.5 -Ί -0.5 ( 5 0.5 1 1.5 2 

δ (mm) 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAY_imp = 1.25 mm, NON-SWAY_imp = -0.80 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 280.0 6.0 13.0 73.44 209.00 69.67 117.71 0.360 

2 300.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 280.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 802.89 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 980.22 kN*mm/rad 

Translational (Sway) Stiffness of frame : 19.03 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 3.932 8.0359 1.00 0.417 -5.935 -0.008 

2 4.842 12.1892 1.00 -0,878 0.000 0.015 

First YIELD Load = 7.082 kN 

First HINGE Load = 7.626 kN 

SQUASH Load = 26.437 kN 

* Sway 

Non-Sway 
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T e s t : 16ocl 
E l a s t i c B u c k l i n g 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.2 

3.4 

3.6 

3.8 

4 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

Loading 

Top 

reads 

953 

955 

960 

964 

969 

973 

980 

988 

997 

1007 

1019 

1029 

1039 

1047 

1059.5 

1069 

1076 

1082 

1089 

1096 

1106 

1115 

Mid 

reads 

1526 

1526 

1526 

1526 

1526 

1527 

1527 

1528 

1528 

1529 

1530 

1530 

1530 

1530.5 

1530.5 

1531 

1531 

1531.5 

1531.5 

1531.5 

1531 

1530 

Unloading 

Top 

reads 

967 

975 

983.5 

990 

998 

1005 

1015 

1024 

1034 

1047 

1060 

1070 

1078 

1089 

1097.5 

1102.5 

1106.5 

1110 

1114 

1118 

1120 

1115 

Mid 

reads 

1522 

1520 

1519 

1519 

1518.5 

1518 

1518 

1518 

1518 

1518 

1516 

1517 

1517 

1516 

1517 

1520 

1521 

1522.5 

1524 

1525.5 

1526.5 

1530 

S o u t h w e l l P l o t 

S w a y M o d e 

δ, 

100 

mm 

0.000 

\ 0.020 

0.070 

0.110 

0.160 

0.200 

0.270 

0.350 

0.440 

0.540 

0.660 

0.760 

0.860 

0.940 

1.065 

1.160 

1.230 

1.290 

1.360 

1.430 

1.530 

1.620 

δ, 

100P 

mm/kN 

0.000 

0.067 

0.117 

0.122 

0.133 

0.133 

0.150 

0.167 

0.183 

0.200 

0.220 

0.238 

0.253 

0.261 

0.280 

0.290 

0.300 

0.307 

0.316 

0.325 

0.340 

0.352 

Non-Sway Mode 

δ,-Α/2 

100 

mm 

0.000 

0.010 

0.035 

0.055 

0.080 

0.110 

0.145 

0.195 

0.240 

0.300 

0.370 

0.420 

0.470 

0.515 

0.578 

0.630 

0.665 

0.700 

0.735 

0.770 

0.815 

0.850 

100P 

mm/kN 

0.000 

0.033 

0.058 

0.061 

0.067 

0.073 

0.081 

0.093 

0.100 

0.111 

0.123 

0.131 

0.138 

0.143 

0.152 

0.158 

0.162 

0.167 

0.171 

0.175 

0.181 

0.185 
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I 
-— 

1.6-1 

1.4 

1.2 

1 

o.a 

0.6 

0.4 

0.2 

0.2-

0.4 

0.6 

o.a 

South well 
Sway Mode 

So 

5/ ', 

ι ι ι ι ι — ι 

Plot 

So 

s / " 

ο 

Pes = 6.76 kN 

ttot = -0.75 mm 

I I I I I 

π 

, 
0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 0.33 0.36 

δ/Ρ (mm I kN) 

Southwell Plot 

Non - Sway Mode 

ξ - -0.70mm 
tot 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 

δ/Ρ (mm/kN) 
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§ 

Load vs. deflection at top & middle 
5n 

Or 

2 

1.^ 

1 

0.5] 

Loading * δ t0P 
π δ middle 

χ 5 κ : 

Unloading 

D Δ 

D ώ 

-1.8 -1.5 -1.2 -0.9 -0.6 -0.3 0 

δ (mm) 

0.3 0.6 0.9 1.2 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAY_imp = 0.75 mm, NON-SWAY_imp = 0.70 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 270.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

2 350.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 270.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 667.41 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 799.47 kN*mm/rad 

Translational (Sway) Stiffness of frame : 17.68 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 4.407 6.5299 1.00 0.733 -7.436 -0.008 * Sway 

2 5.075 8.6594 1.00 -0,690 0.000 0.013 Non-Sway 

First YIELD Load = 5.981 kN 

First HINGE Load = 6.307 kN 

SQUASH Load = 22.477 kN 
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T e s t : 12ocl 
E l a s t i c B u c k l i n g 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 

2.6 

2.8 

3 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

4 

Loading 

Top 

reads 

671 

673.2 

681 

685.5 

690.5 

695 

701 

707 

714 

722 

731 

741.5 

752 

762 

772.3 

785 

791.5 

797 

805.5 

812.5 

818 

825 

831.5 

839 

850 

861.5 

Mid 

reads 

1208 

1207 

1202.5 

1199.5 

1195 

1193 

1189 

1185.5 

1181.5 

1177 

1172 

1166 

1161 

1155 

1149.5 

1142 

1138.5 

1135.5 

1131 

1127 

1123.5 

1120 

1115.5 

1111.2 

1105 

1099 

Unloading 

Top 

reads 

672 

677.5 

684 

690 

695.5 

702 

708.5 

715 

722.5 

731 

741 

751 

760 

769 

780 

791 

799 

801.5 

816 

822.5 

832 

842.5 

850 

856 

859.5 

861.5 

Mid 

reads 

1209 

1208 

1204 

1200 

1197 

1194 

1189.5 

1185.5 

1181.5 

1176.5 

1171.5 

1166.5 

1162 

1156.5 

1150 

1144 

1138.5 

1133 

1129.5 

1124 

1118.5 

1112 

1107.5 

1103.5 

1101 

1099 

S o u t h w e l l P l o t 

S w a y M o d e 

100 

mm 

0.000 

0.022 

0.100 

0.145 

0.195 

0.240 

0.300 

0.360 

0.430 

0.510 

0.600 

0.705 

0.810 

0.910 

1.013 

1.140 

1.205 

1.260 

1.345 

1.415 

1.470 

1.540 

1.605 

1.680 

1.790 

1.905 

àt 

100P 

mm/kN 

0.000 

0.110 

0.250 

0.242 

0.244 

0.240 

0.250 

0.257 

0.269 

0.283 

0.300 

0.320 

0.338 

0.350 

0.362 

0.380 

0.389 

0.394 

0.408 

0.416 

0.420 

0.428 

0.434 

0.442 

0.459 

0.476 

Non-Sway Mode 

100 

mm 

0.000 

0.001 

0.005 

0.013 

0.033 

0.030 

0.040 

0.045 

0.050 

0.055 

0.060 

0.068 

0.065 

0.075 

0.079 

0.090 

0.093 

0.095 

0.098 

0.103 

0.110 

0.110 

0.123 

0.128 

0.135 

0.138 

100P 

mm/kN 

0.000 

0.005 

0.013 

0.021 

0.041 

0.030 

0.033 

0.032 

0.031 

0.031 

0.030 

0.031 

0.027 

0.029 

0.028 

0.030 

0.030 

0.030 

0.030 

0.030 

0.031 

0.031 

0.033 

0.034 

0.035 

0.034 
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ξ 
5 

Ό 

2η 

1.6-

1.2-

0.8^ 

0.Φ 

0.4-

0.8-

1.2-

1 fi-
( ) 0.Ò5 

South well 
Sway Mode 

/^° 

/ / \ 

Oil 0.15 0l2 0.25 

Plot 

0.3 

-"ο 

Pes =6.74kN 

?tot = - 1 4 0 mm 

0.35 0l4 0.45 

H 

η 

0. 

<5/Ρ (mm/kN) 

Southwell Plot 
Non - Sway Mode 

Pcn= 7.54kN 

ξ = -0.145 mm 
tot 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 

δ/Ρ (mm/kN) 
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Load vs. deflection at top & middle 

% 

4n 

3.5^ 

3^ 

2.& 

2 

1.5-

1 

0.54 

X X 
Χ * 

X * 
x * 

X X 

-1.5 

X X 

X X 

Χ 5K 

X * 

< Ä Cl·' 

Χ Μ 

X * Df 

Χ * Γ. ν 

Χ* [ i 

Χ* Ρ 

π «5 middle Λ * 

b i =b3 = 5 m m b2 = 6 mm 

I 

300 mm | 300 mm 

-0.5 0 0.5 1 

δ (mm) 
1.5 2.5 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets= 3, SWAY_imp = 1.40 mm, NON-SWAY_imp = 0.14 mm 

MEM L 

1 330.0 

2 300.0 

3 330.0 

b 

5.0 

6.0 

5.0 

M E M B E R 

d 

13.0 

13.0 

13.0 

A 

62.44 

73.44 

62.44 

P R O P E R T I E S 

I 

125.70 

209.00 

125.70 

Zel 

50.28 

69.67 

50.28 

Zpl 

81.45 

117.71 

81.45 

Y.str 

0.360 

0.360 

0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 1234.98 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1468.91 kN*mm/rad 

Translational (Sway) Stiffness of frame : 15.96 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 5.265 6.2396 1.00 1.792 -12.836 -0.004 * Sway 

2 5.630 7.1350 1.00 -0.339 0.000 0.006 Non-Sway 

First YIELD Load = 5.642 kN 

First HINGE Load = 5.931 kN 

SQUASH Load = 22.477 kN 
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T e s t : 4ocl 
E l a s t i c B u c l i n g 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 

2.6 

2.8 

3 

3.2 

3.4 

3.6 

3.8 

4 

Loading 

Top 

reads 

1493 

1492 

1490 

1487 

1482.5 

1479 

1475 

1471 

1466 

1461 

1456 

1450 

1444 

1438 

1430 

1420 

1411 

1399 

1389 

1378 

1365 

Mid 

reads 

425 

427.5 

430 

434 

438.5 

443 

449 

454 

461 

468 

474 

482 

490 

499 

509 

520 

532.5 

547 

561 

576 

595 

Unloading 

Top 

reads 

1483 

1480 

1476 

1472 

1469 

1465 

1459.5 

1454 

1448 

1442 

1439 

1430 

1423 

1417 

1409 

1401 

1394 

1388 

1378 

1369 

1365 

Mid 

reads 

441 

446 

451.5 

456 

460 

466 

471 

477.5 

484 

490 

495 

505 

513 

521 

529 

540 

548 

558 

573 

583 

595 

S o u t h w e l l P l o t 

S w a y M o d e 

100 

mm 

0.000 

* 0.010 

0.030 

0.060 

0.105 

0.140 

0.180 

0.220 

0.270 

0.320 

0.370 

0.430 

0.490 

0.550 

0.630 

0.730 

0.820 

0.940 

1.040 

1.150 

1.280 

δ, 

100P 

mm/kN 

0.000 

0.050 

0.075 

0.100 

0.131 

0.140 

0.150 

0.157 

0.169 

0.178 

0.185 

0.195 

0.204 

0.212 

0.225 

0.243 

0.256 

0.276 

0.289 

0.303 

0.320 

Non-Sway Mode 

δ,Λ/2 
100 

mm 

0.000 

0.020 

0.035 

0.060 

0.083 

0.110 

0.150 

0.180 

0.225 

0.270 

0.305 

0.355 

0.405 

0.465 

0.525 

0.585 

0.665 

0.750 

0.840 

0.935 

1.060 

1 0 0 P 

mm/kN 

0.000 

0.100 

0.088 

0.100 

0.103 

0.110 

0.125 

0.129 

0.141 

0.150 

0.153 

0.161 

0.169 

0.179 

0.188 

0.195 

0.208 

0.221 

0.233 

0.246 

0.265 
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«o 

Southwell Plot 

Sway Mode 

0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 0.33 

δ/Ρ (mm/kN) 

I 
«o 

1.2 

1 

0.8 Η 

0.6 

0.4 

0.2 

0 + 

-0.2 

-0.4 

-0.6 

-0.8 

Southwell Plot 
Non - Sway Mode 

ρ = 6.72 kN 

en 

ξΜ = -0.74 mm 

0.025 0.05 0.075 Q,1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 

Ô/P (mm/kN) 
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I 

Load vs. deflection at top & middle 
4n 

3.fr 

3.2r 

2.& 

2A 

2 

1.2 

O.fr 

OA 

D û # X 

D û * Χ 

D û Κ 

Ώ « 

D «Δ 

D * û 

D * Δ χ 

D ÎK Δ χ 

• * û χ 

α * £. χ 

α * ώ χ 

Ο * Δ χ 

• * -χ 

Loading * / * £ χ Unloading 
π (5 m/cW/e Δ * 

/>r - 5 mm "s, _|\ I b2- b3 - 6 mm 

V&AfA 

. 314 mm 314 mm 

~02 öS öle ô!e ì L2 TA Ta TA 2~ 

<5 (mm) 

% 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, S W A Y J m p = 0.86 mm, NON-SWAY_imp = -0.74 mm 

MEM L b 

1 340.0 5.0 

2 314.0 6.0 

3 340.0 6.0 

M E M B E R P R O P E R T I E S 

d A I Zel Zpl Y.str 

13.0 62.44 125.70 50.28 81.45 0.360 

13.0 73.44 209.00 69.67 117.71 0.360 

13.0 73.44 209.00 69.67 117.71 0.360 

Rot.Sym.Non-sway Rot.Antisym.Sway Transi.Sway 

Stiffness of frame : 1221.35 kN*mm/rad 1465.26 kN*mm/rad 17.933 N/mm. 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta theta_A Mode-Case 

1 5.640 6.7459 1.00 -0.333 0.000 0.006 Non-Sway 

2 5.643 6.7528 1.00 3.018 -20.600 -0.005 * Sway 

First YIELD Load = 5.507 kN 

First HINGE Load = 6.061 kN 

SQUASH Load = 22.477 kN 
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T e s t : 23ocl 
E l a s t i c B u c k l i n g 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.3 

3.6 

3.9 

4.2 

4.4 

4.6 

4.8 

5 

5.2 

5.4 

5.6 

5.8 

6 

6.2 

6.4 

Loading 

Top 

reads 

681 

682 

683 

685.5 

688 

690.5 

694 

697 

701 

704.5 

710 

718 

727 

736 

744.5 

750 

757 

765 

772 

779 

789 

795 

805 

814 

824 

833 

Mid 

reads 

1303 

1303 

1303 

1304 

1306 

1309 

1312 

1313 

1314 

1315.5 

1316 

1317 

1319 

1320.5 

1321 

1323 

1323 

1324 

1325 

1326.5 

1327 

1329 

1330 

1331 

1333 

1336 

Unloading 

Top 

reads 

689 

962 

696 

700 

705 

710 

715 

720 

724 

728 

732 

736 

744 

748 

757 

765 

772.5 

780 

789 

799 

809 

817.5 

823 

829 

835 

833 

Mid 

reads 

1304.5 

1308.5 

1309 

1309.5 

1310 

1311 

1312 

1313 

1314 

1315 

1317.5 

1318.5 

1320 

1322 

1322 

1322.5 

1323 

1323 

1323 

1323 

1323 

1324.5 

1325 

1328 

1330 

1336 

S o u t h w e l l P l o t 

S w a y M o d e 

δ, 

100 

nlm 

0.000 

jO.010 

0.020 

0.045 

0.070 

0.095 

0.130 

0.160 

0.200 

0.235 

0.290 

0.370 

0.460 

0.550 

0.635 

0.690 

0.760 

0.840 

0.910 

0.980 

1.080 

1.140 

1.240 

1.330 

1.430 

1.520 

^ 

100P 

mm/kN 

0.000 

0.033 

0.033 

0.050 

0.058 

0.063 

0.072 

0.076 

0.083 

0.087 

0.097 

0.112 

0.128 

0.141 

0.151 

0.157 

0.165 

0.175 

0.182 

0.188 

0.200 

0.204 

0.214 

0.222 

0.231 

0.238 

Non-Sway Mode 

δ,Λ/2 
100 

mm 

0.000 

0.005 

0.010 

0.033 

0.065 

0.108 

0.155 

0.180 

0.210 

0.243 

0.275 

0.325 

0.390 

0.450 

0.498 

0.545 

0.580 

0.630 

0.675 

0.725 

0.780 

0.830 

0.890 

0.945 

1.015 

1.090 

1 0 0 P 

mm/kN 

0.000 

0.017 

0.017 

0.036 

0.054 

0.072 

0.086 

0.086 

0.088 

0.090 

0.092 

0.098 

0.108 

0.115 

0.118 

0.124 

0.126 

0.131 

0.135 

0.139 

0.144 

0.148 

0.153 

0.158 

0.164 

0.170 
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1.&I 

1.4 

1.2-

1 

o.a 
0.& 

0.4 

0.2 

Southwell Plot 
Sway Mode 

10.53 kN 

- 0.98 mm 

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 O.i 

δ/Ρ (mm/kN) 
0.25 

«O 

1.2 

1 

0.& 

0.& 

0.4 

0.2 

Southwell Plot 
Non - Sway Mode 

Pcn= 11.35 kN 

ξ = -0.88 mm 
tot 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 

δ/Ρ (mm/kN) 
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7-1 

6.5^ 

& 

5.& 

& 

^ - 3.& 

Q. * 

2.& 

2 

1.5-

1 

0.& 

-2 

Load vs. deflection at top & middle 

-1.5 

X * 

X * 

Χ Κ 

X Ut 

χ * 

π δ middle Δ * 

b2=b3 = 6mm b^ömm 

1 il L 

Ο Δ 

D Δ 

300 mm 300 mm 
μ »μ -ι 

-0.5 0 0.5 1 

<5 (mm) 

1.5 2.5 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAYJmp = 0.98 mm, NON-SWAY_imp = -0.85 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 260.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

2 300.0 6.0 13.0 73.44 209.00 69.67 117.71 0.360 

3 260.0 6.0 13.0 73.44 209.00 69.67 117.71 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 1343.77 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1641.35 kN*mm/rad 

Translational (Sway) Stiffness of frame : 38.04 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 5.540 11.1290 1.00 2.566 -17.980 -0.007 

2 5.542 11.1352 1.00 -0.389 0.000 0.008 

First YIELD-Load = 7.753 kN 

First HINGE Load = 9.188 kN 

SQUASH Load = 22.477 kN 

* Sway 

Non-Sway 
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T e s t : 25ocl 
E l a s t i c B u c k l i n g 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3 

3.1 

3.2 

3.3 

Loading 

Top 

reads 

969 

973 

977 

981 

986 

990.5 

996.5 

1002.5 

1009 

1016.5 

1024 

1028 

1032 

1036 

1040 

1045 

1051 

1057.5 

1064 

1069.5 

1078 

1083 

1090 

1098 

Mid 

reads 

1156 

1156.5 

1156.5 

1157 

1158 

1158 

1158 

1158.5 

1159.5 

1160.5 

1163 

1163.5 

1164.5 

1166 

1167 

1168.5 

1171 

1172.5 

1174.5 

1176.5 

1178.5 

1181.5 

1184.5 

1188 

Unloading 

Top 

reads 

988 

997 

1001 

1007.5 

1013 

1019 

1025 

1031 

1038 

1045 

1052.5 

1056 

1061 

1066.5 

1071 

1076 

1080 

1083 

1087 

1091.5 

1095.5 

1097 

1098 

1098 

Mid 

reads 

1148.5 

1149 

1151.5 

1152 

1152.5 

1153 

1153 

1154 

1155 

1156 

1157 

1157.5 

1158.5 

1159.5 

1160 

1161 

1163 

1165 

1166 

1168 

1171.5 

,1176 

1180 

1188 

S o u t h w e l l P l o t 

S w a y M o d e 

100 

mm 

0.000 

l· 0.040 

0.080 

0.120 

0.170 

0.215 

0.275 

0.335 

0.400 

0.475 

0.550 

0.590 

0.630 

0.670 

0.710 

0.760 

0.820 

0.885 

0.950 

1.005 

1.090 

1.140 

1.210 

1.290 

δ, 

100P 

mm/kN 

0.000 

0.200 

0.200 

0.200 

0.213 

0.215 

0.229 

0.239 

0.250 

0.264 

0.275 

0.281 

0.286 

0.291 

0.296 

0.304 

0.315 

0.328 

0.339 

0.347 

0.363 

0.368 

0.378 

0.391 

Non-Sway Mode 

δ , - δ / 2 

100 

mm 

0.000 

0.025 

0.045 

0.070 

0.105 

0.128 

0.158 

0.193 

0.235 

0.283 

0.345 

0.370 

0.400 

0.435 

0.465 

0.505 

0.560 

0.608 

0.660 

0.708 

0.770 

0.825 

0.890 

0.965 

100P 

mm/kN 

0.000 

0.125 

0.113 

0.117 

0.131 

0.128 

0.131 

0.138 

0.147 

0.157 

0.173 

0.176 

0.182 

0.189 

0.194 

0.202 

0.215 

0.225 

0.236 

0.244 

0.257 

0.266 

0.278 

0.292 
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ε_ 

«ο 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0ψ 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

-1.2 

Southwell Plot 
Sway Mode 

P„ = 5.74 kN 
CS 

ξ tnt = - 1.07 mm 

0.05 ÔTÏ Ö15 ÖI2 0.25 

δ/Ρ (mm/kN) 

0.3 0.35 0.4 

1 

0.8 

0.6 

0.4 

0.2 

04 

-0.2 

-0.4 

-0.6 

Southwell Plot 
Non - Sway Mode 

p = 4.47 kN 
en 

Et t - - 0.48 mm 
* tot 

0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 

δ/Ρ (mm/kN) 
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•5 

Load vs. deflection at top & middle 

2.7 

2.1 

1.8-

1.5-

1.2-

0.9̂  

0.6-

0.3̂  

X * 
X * 

1.5 -1 -0.5 

b1 =b3 = 3mm b2 = 5mm 

Π Δ 

250 mm 250 mm 

Loading χ δ top χ 
α δ middle A 

Unloading 

0 (Ü5 1 U> \ 2Ü5 3 

δ (mm) 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAYJmp = -1.07 mm, NON-SWAY_imp = -0.48 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 210.0 3.0 13.0 38.47 28.53 19.02 29.26 0.360 

2 250.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 210.0 3.0 13.0 38.47 28.53 19.02 29.26 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 920.69 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1112.57 kN*mm/rad 

Translational (Sway) Stiffness of frame : 25.34 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 5.944 4.4573 1.00 -0.171 0.000 0.005 Non-Sway 

2 6.423 5.2043 1.00 -14.263 88.629 -0.005 * Sway 

First YIELD Load = 3.066 kN 

First HINGE Load = 3.579 kN 

SQUASH Load = 13.848 kN 



Appendix E Experimental Data and Results 324 

T e s t : 26ocl 
E la s t i c B u c k l i n g 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

Loading 

Top 

reads 

334 

337 

344 

347 

351 

355.5 

358.5 

361 

365 

369 

373 

378 

383 

389 

394 

400 

408 

416 

424 

434 

447 

459 

472 

486 

501.5 

Mid 

reads 

1063 

1062 

1060 

1056 

1051 

1048.5 

1047.5 

1046.5 

1046 

1044.5 

1043 

1041 

1039.5 

1037 

1035 

1033 

1031 

1028 

1025 

1021 

1016 

1009.5 

1005 

999 

991.5 

Unloading 

Top 

reads 

353 

361 

369 

377 

385 

393 

399 

404.5 

409 

415 

421 

426 

434 

441 

446 

455 

462 

471 

476.5 

483.5 

490 

495 

499 

501 

501.5 

Mid 

reads 

1054 

1040 

1037.5 

1035 

1032 

1029 

1027 

1025 

1023 

1021 

1019 

1017 

1013.5 

1011 

1009.5 

1006 

1003 

998.5 

996.5 

993.5 

991 

989 

989.5 

' 990 

991.5 

S o u t h w e l l P l o t 

S w a y M o d e 

100 

mm 

0.000 

\ 0.030 

0.100 

0.130 

0.170 

0.215 

0.245 

0.270 

0.310 

0.350 

0.390 

0.440 

0.490 

0.550 

0.600 

0.660 

0.740 

0.820 

0.900 

1.000 

1.130 

1.250 

1.380 

1.520 

1.675 

δ, 

100F 

mm/kN 

0.000 

0.150 

0.250 

0.217 

0.213 

0.215 

0.223 

0.225 

0.238 

0.250 

0.260 

0.275 

0.288 

0.306 

0.316 

0.330 

0.352 

0.373 

0.391 

0.417 

0.452 

0.481 

0.511 

0.543 

0.578 

Non-Sway Mode 

100 

mm 

0.000 

0.005 

0.020 

0.005 

0.035 

0.038 

0.033 

0.030 

0.015 

0.010 

0.005 

0.000 

0.010 

0.015 

0.020 

0.030 

0.050 

0.060 

0.070 

0.080 

0.095 

0.090 

0.110 

0.120 

0.123 

1 0 0 P 

mm/kN 

0.000 

0.025 

0.050 

0.008 

0.044 

0.038 

0.030 

0.025 

0.012 

0.007 

0.003 

0.000 

0.006 

0.008 

0.011 

0.015 

0.024 

0.027 

0.030 

0.033 

0.038 

0.035 

0.041 

0.043 

0.042 
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c: 

Î 
•8 

1.75 

1.5 

1.25 

1 

0.75 

0.5 

0.25 

04 

-0.25 

-0.5 

-0.75 

Southwell Plot 
Sway Mode 

Pcs = 4.20kN 

ξ tnt = -0.65 mm 

0.06 0.12 0.18 0.24 0.3 0.36 0.42 0.48 0.54 0.6 

δ/Ρ (mm/kN) 

υ 
.9? 

1 

0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

04 

-0.02 

-0.04 

-0.06 

Southwell Plot 
Non - Sway Mode 

ρ = 3.55 kN 
en 

Et . = -0.036 mm 
' tot 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 

δ/Ρ (mm/kN) 
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Load vs. deflection at top & middle 
3i 

2.7 

2.4H 

2.1 

1.8-

1.5-

1.2-

0.9^ 

O.fr 

0.& 

Loading * δ tof x Unloading 
α δ middle Δ α 

Χ Δ * ] 

-2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 Ο 

δ (mm) 

ο Ö25 ole 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAY_imp = -0.65 mm, NON-SWAY_imp = -0.04 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 235.0 3.0 13.0 38.47 28.53 19.02 29.26 0.360 

2 400.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 235.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 580.93 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 682.39 kN*mm/rad 

Translational (Sway) Stiffness of frame : 21.38 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 5.818 3.4092 1.00 -0.237 0.000 0.006 Non-Sway 

2 6.777 4.6264 1.00 -3.967 23.289 -0.007 * Sway 

First YIELD Load = 2.827 kN 

First HINGE Load = 3.066 kN 

SQUASH Load = 13.848 kN 
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T e s t : 6N1 
E l a s t i c B u c k l i n g 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3 

Loading 

Top 

reads 

1377 

1376 

1372 

1367 

1361 

1355 

1350 

1346 

1341 

1336 

1330 

1325 

1319 

1311 

1304 

1296 

1287 

1278 

1267 

1255 

1242 

1226 

1209 

1189 

1167 

1131 

Mid 

reads 

1100 

1105 

1112.5 

1123 

1134 

1146 

1153 

1161 

1168 

1178 

1190 

1199 

1210 

1226 

1238 

1254 

1271 

1290 

1312 

1338 

1368 

1400 

1439 

1487 

1546 

1642 

Unloading 

Top 

reads 

1374 

1369 

1365 

1360 

1353 

1345 

1341 

1337 

1332 

1327 

1322 

1316 

1310 

1303 

1295 

1287.5 

1277 

1267 

1256 

1246 

1232 

1212 

1189 

1168 

1143 

1131 

Mid 

reads 

1120 

1133 

1143 

1155 

1169 

1184 

1191 

1201 

1210 

1221 

1231 

1243 

1256 

1270 

1286 

1303 

1324 

1345 

1371 

1393 

1425 

1462 

1508 

1556 

1606 

1642 

S o u t h w e l l P l o t 

S w a y M o d e 

δ , 

100 

mm 

0.000 

'' 0.010 

0.050 

0.100 

0.160 

0.220 

0.270 

0.310 

0.360 

0.410 

0.470 

0.520 

0.580 

0.660 

0.730 

0.810 

0.900 

0.990 

1.100 

1.220 

1.350 

1.510 

1.680 

1.880 

2.100 

2.460 

δ, 

100P 

mm/kN 

0.000 

0.050 

0.125 

0.167 

0.200 

0.220 

0.245 

0.258 

0.277 

0.293 

0.313 

0.325 

0.341 

0.367 

0.384 

0.405 

0.429 

0.450 

0.478 

0.508 

0.540 

0.581 

0.622 

0.671 

0.724 

0.820 

Non-Sway Mode 

δ,Λ/2 
100 

mm 

0.000 

0.045 

0.100 

0.180 

0.260 

0.350 

0.395 

0.455 

0.500 

0.575 

0.665 

0.730 

0.810 

0.930 

1.015 

1.135 

1.260 

1.405 

1.570 

1.770 

2.005 

2.245 

2.550 

2.930 

3.410 

4.190 

100P 

mm/kN 

0.000 

0.225 

0.250 

0.300 

0.325 

0.350 

0.359 

0.379 

0.385 

0411 

0.443 

0.456 

0.476 

0.517 

0.534 

0.568 

0.600 

0.639 

0.683 

0.738 

0.802 

0.863 

0.944 

1.046 

1.176 

1.397 
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| 

Ì 
I 

2.4 

2.1 

1.8 

1.5 

1.2 

0.9 

0.6 

0.3 

0 ^ 

-0.3 

-0.6 

-0.9 

Southwell Plot 
Sway Mode 

Pes = 4.09 kN 

ξt - - 0.83 mm 
tot 

0.1 0.2 0.3 0.4 0.5 0.6 

δ/Ρ (mm/kN) 

0.7 0.8 0.9 

.o 

1 
ι 

s 

4.5 

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

0i 
-0.5 

-1 

-1.5 

Southwell Plot 
Non - Sway Mode 

ρ = 3.5 kN 
en 

Et . = -0.82 mm 
^tot 

0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5 

Ô/P (mm/kN) 
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g 

Load vs. deflection at top & middle 
3.3i 

3̂  

2.7 

2.4j 

2.1 

1.8-

1.5-

1.2-

0.9̂  

0.& 

X X 
X X 

χ χ 
X X • 

X X D 
x x α 

X X D 
X X D 

Χ Χ Π Δ 
Χ Χ Π Δ 

χ χα Δ 

Χ XD Δ 
Χ Μ3 Δ 

Χ XD Δ 

Χ XI Δ 

Loading * / ^ , Χ Unloading 
π δ middle Δ W 

Χ κι 

χ ο; ' 

CX Δ 

•ίΚ Α 

0.4 0.8 1.2 Ύβ i 2Ϊ~ 

<5 ^Α77/77^ 

2.8 3.2 3.6 4.4 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAY_imp = -0.83 mm, NON-SWAY_imp = 0.82 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 235.0 3.0 

2 370.0 5.0 

3 235.0 5.0 

13.0 38.47 

13.0 62.44 

13.0 62.44 

28.53 19.02 

125.70 50.28 

125.70 50.28 

29.26 0.360 

81.45 0.360 

81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 637.69 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 757.60 kN*mm/rad 

Translational (Sway) Stiffness of frame : 23.41 N/mm 

Solut 

E I G E N V A L U E S & E I G E N V E C T O R S 

kL Pc Cl C2 delta thêta A Mode-Case 

1 5.855 3.4533 1.00 -0.217 0.000 0.005 

2 6.968 4.8910 1.00 -2.805 16.026 -0.006 

First YIELD Load = 2.714 kN 

First HINGE Load = 3.011 kN 

SQUASH Load = 13.848 kN 

Non-Sway 

* Sway 
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T e s t : 18oc2 
Elastic-Plastic Bucklilng 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.3 

3.6 

3.9 

4.2 

4.5 

4.8 

5 

5.2 

5.4 

5.6 

5.8 

6 

6.2 

6.4 

6.6 

6.8 

7 

7.2 

7.4 

7.6 

7.8 

8 

8.2 

Loading 

Top 

reads 

661 

662 

664.2 

667.5 

671 

675 

679 

687 

695.5 

708.5 

712.5 

722.5 

733 

744.5 

758 

773 

790.5 

803 

816 

829.5 

843.5 

860 

877.5 

896 

918 

946 

977 

1014 

1056 

1099 

1156 

1210 

1285 

1375 

Mid 

reads 

1264 

1264 

1264.5 

1265.5 

1266.2 

1267 

1268.5 

1269 

1268.5 

1268.5 

1268.5 

1269.5 

1269.5 

1270.5 

1271 

1271 

1271.5 

1272 

1272.5 

1273.5 

1274.5 

1275 

1275 

1274.5 

1273 

1268 

1262.5 

1254.5 

1245 

1236 

1222 

1205 

1180 

1148 

Unloading 

Top 

reads 

679 

687 

697 

704 

713 

723 

730 

740 

752 

765 

779 

796 

812 

828 

850 

871 

894 

915 

921 

962 

988 

1018 

1051 

1083 

1125 

1169 

1215 

1264 

1307 

1341.5' 

1371 

1383 

1385 

1375 

Mid 

reads 

1258.5 

1259.5t 

1260 

1260 

1261 

1261 

1261 

1262 

1262 

1261.5 

1261 

1261 

1260 

1260 

1258 

1256 

1252 

1248 

1245 

1236 

1231 

1222.5 

1214 

1206 

1195 

1181 

1168 

1154 

1142 

1134 

1128 

1131 

1137 

1148 

S o u t h w e l l P l o t 

S w a y M o d 

• 100 

m m 

0.000 

0.010 

0.032 

0.065 

0.100 

0.140 

0.180 

0.260 

0.345 

0.475 

0.515 

0.615 

0.720 

0.835 

0.970 

1.120 

1.295 

1.420 

1.550 

1.685 

1.825 

1.990 

2.165 

2.350 

2.570 

2.850 

3.160 

3.530 

3.950 

4.380 

4.950 

5.490 

6.240 

7.140 

δ, 

100P 

mm/kN 

0.000 

0.033 

0.053 

0.072 

0.083 

0.093 

0.100 

0.124 

0.144 

0.176 

0.172 

0.186 

0.200 

0.214 

0.231 

0.249 

0.270 

0.284 

0.298 

0.312 

0.326 

0.343 

0.361 

0.379 

0.402 

0.432 

0.465 

0.504 

0.549 

0.592 

0.651 

0.704 

0.780 

0.871 

Non-Sway M o d e 

δ -δ,/2 

100 

m m 

0.000 

0.005 

0.021 

0.048 

0.072 

0.100 

0.135 

0.180 

0.218 

0.283 

0.303 

0.363 

0.415 

0.483 

0.555 

0.630 

0.723 

0.790 

0.860 

0.938 

1.018 

1.105 

1.193 

1.280 

1.375 

1.465 

1.565 

1.670 

1.785 

1.910 

2.055 

2.155 

2.280 

2.410 

κ- w 
ÎOOP 

mm/kN 
0.000 

0.017 

0.035 

0.053 

0.060 

0.067 

0.075 

0.086 

0.091 

0.105 

0.101 

0.110 

0.115 

0.124 

0.132 

0.140 

0.151 

0.158 

0.165 

0.174 

0.182 

0.191 

0.199 

0.206 

0.215 

0.222 

0.230 

0.239 

0.248 

0.258 

0.270 

0.276 

0.285 

0.294 
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«ο 

Southwell Plot 
Sway Mode 

7-

6 

5-

4 

3 

2 

1 

0 <L o o c ^ 

^ w = -1.05 mm 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

δ/Ρ (mm/kN) 

2.4 

2 

1.6 

1.2 

0.8 

0.4 

04 

-0.4 

-0.8 

-1.2 

-1.6 

Southwell Plot 
Non - Sway Mode 

47 kN 

ξ tat = -1.05 mm 

0.03 0.06 0.09 ,. 0.12 0.15 0.18 0.21 0.24 0.27 0.3 

Ô/P (mm/kN) 
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S 

Load vs. deflection at top & middle 

Loading * δ top χ 
π δ middle Δ 

χ M 

χ * 

Χ χ 

χ * 

χ * 

χ * 

χ χ 

χ * 

χ * 

-6 -5 -4 -3 -2 -1 

δ (mm) 

Unloading 

α Λ 
π Δ 

D Δ 
D Δ 

D ώ 
D Δ 

D Δ 

D Δ 

D Δ 

^ - ^ 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets= 3, SWAYJmp = 1.05 mm, NON-SWAY_imp =-1.05 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 280.0 6.0 13.0 73.44 209.00 69.67 117.71 0.360 

2 300.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 280.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 802.89 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 980.22 kN*mm/rad 

Translational (Sway) Stiffness of frame : 19.03 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 3.932 8.0359 1.00 0.417 -5.935 -0.008 

2 4.842 12.1892 1.00 -0J878 0.000 0.015 

First YIELD Load = 7.094 kN 

First HINGE Load = 7.666 kN 

SQUASH Load = 26.437 kN 

* Sway 

Non-Sway 
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T e s t : 16oc2 

Elasto_PIastic Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.3 

3.6 

3.9 

4.2 

4.4 

4.6 

4.8 

5 

5.2 

5.4 

5.6 

5.7 

5.8 

5.9 

6 

6.1 

6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

6.7 

Loading 

Top 

reads 

966.5 

967.5 

969 

972.5 

976.5 

981 

988 

994 

1002 

1012 

1024 

1037 

1050 

1063 

1083 

1098 

1115 

1137.5 

1156.5 

1180 

1213 

1252 

1281 

1315 

1347 

1383 

1415 

1460 

1515 

1567 

1630 

1717 

1815 

2145 

Mid 

reads 

1522 

1523.5 

1524.5 

1525 

1525 

1525 

1526 

1525.5 

1527.5 

1528 

1528 

1529 

1530 

1531.5 

1531 

1531.5 

1530.5 

1529.5 

1529 

1528.5 

1525 

1520 

1514 

1507 

1500 

1494 

1488 

1479 

1467 

1459 

1444 

1421 

1391 

1322 

Unloading 

Top 

reads 

1174 

1192 

1209 

1228 

1250 

1270 

1295 

1326 

1358 

1392 

1433 

1480 

1543 

1611 

1692 

1757 

1828 

1922 

2022 

2099 

2192 

2290 

2349 

2379 

2397 

Mid 

reads 

1550 

1551 

1551 

1552 

1553 

1554 

1554 

1554 

1554 

1553 

1552.5 

1549.5 

1541 

1528 

1509 

1493 

1475 

1446 

1417 

1400 

1378 

1354 

1339 

1333 

1334 

• 

S o u t h w e l l P l o t 

S w a y M o d e 

a, 
100 

mm 

0.000 

\ 0.010 

0.025 

0.060 

0.100 

0.145 

0.215 

0.275 

0.355 

0.455 

0.575 

0.705 

0.835 

0.965 

1.165 

1.315 

1.485 

1.710 

1.900 

2.135 

2.465 

2.855 

3.145 

3.485 

3.805 

β, 

100P 

mm/kN 

0.000 

0.033 

0.042 

0.067 

0.083 

0.097 

0.119 

0.131 

0.148 

0.169 

0.192 

0.214 

0.232 

0.247 

0.277 

0.299 

0.323 

0.356 

0.380 

0.411 

0.456 

0.510 

0.552 

0.601 

0.645 

Non-Sway Mode 

100 

mm 

0.000 

0.020 

0.038 

0.060 

0.080 

0.103 

0.148 

0.173 

0.233 

0.288 

0.348 

0.423 

0.498 

0.578 

0.673 

0.753 

0.828 

0.930 

1.020 

1.133 

1.263 

1.408 

1.493 

1.593 

1.683 

K~*tP 
1 0 0 P 

mm/kN 

0.000 

0.067 

0.063 

0.067 

0.067 

0.068 

0.082 

0.082 

0.097 

0.106 

0.116 

0.128 

0.138 

0.148 

0.160 

0.171 

0.180 

0.194 

0.204 

0.218 

0.234 

0.251 

0.262 

0.275 

0.285 



Appendix E Experimental Data and Results 334 

«ο 
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3.5 
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0.5 

0 + 

-0.5 

-1 

Southwell Plot 
Sway Mode 

P„ = 6.92 kN 

ξ tnt = -0.75 mm 

0.05 Oil 0.15 0.2 0.25 0.3 0.35 θ!4 0.45 θ!δ 0.55 0Ì6 0.65 

(5/P (mm/kN) 

5 
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1.2 

1 

0.8 

0.6 

0.4 

0.2 

04 
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-0.4 

-0.6 

-0.8 

Southwell Plot 
Non - Sway Mode 

ρ = 8.42 kN 
en 

ξ. . = -0.70mm * tor 

0.03 ÖÖ6 ÖÖ9 ÔÏ2 Ö?15 0Λ8 Ö21 Ö24 Ö27 Ö!3 

δ/Ρ (mm/kN) 
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§ 

Load vs. deflection at top & middle 
8η 

7-

Ar 

fr 

2 

1 

Loading 
χ δ top χ 

α δ middle Δ 

V 

Unloading 

\ χ 

16 -14 -12 -10 -8 -6 -4 -2 

<5 f/77m; 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAY_imp = 0.75 mm, NON-SWAY_imp = 0.70 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 270.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

2 350.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 270.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 667.41 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 799.47 kN*mm/rad 

Translational (Sway) Stiffness of frame : 17.68 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 4.407 6.5299 1.00 0.733 -7.436 -0.008 

2 5.075 8.6594 1.00 -0.690 0.000 0.013 

First YIELD Load = 5.981 kN 

First HINGE Load = 6.307 kN 

SQUASH Load = 22.477 kN 

* Sway 

Non-Sway 
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T e s t : 12oc2 

Elastic-Plastic Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.3 

3.6 

3.8 

4 

4.2 

4.4 

4.6 

4.8 

5 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

6 

6.1 

6.2 

6.3 

6.4 

6.5 

Loading 

Top 

reads 

674 

680 

686 

692.5 

700.5 

709 

720 

733.5 

745 

760 

777 

792 

814 

831 

845 

864 

886.5 

913 

933 

975.5 

998 

1033 

1086 

1142 

1167 

1210 

1258 

1299 

1378 

1483 

1515 

1596 

1731 

1813 

Mid 

reads 

1204 

1201 

1197.5 

1193 

1188 

1182.5 

1176.5 

1169.5 

1163 

1154 

1145 

1136.5 

1124 

1114.5 

1106 

1095 

1082 

1067 

1054 

1029.5 

1015 

995 

968 

940 

925 

898 

871 

850 

805 

746 

727 

677 

596 

530 

Unloading 

Top 

reads 

726 

733 

741 

751 

761 

773 

787 

802.5 

816 

834 

855 

886 

916 

944 

979 

1014 

1065 

1101 

1146 

1241 

1325 

1385 

1455 

1533 

1611 

1709 

1805 

1866.5 

1898 

1927 

1976 

Mid 

reads 

1170 

1168 

1165 

1158 

1151 

1144 

1135 

1126 

1117 

1106 

1093 

1075 

1057 

1040 

1019 

1000 

970 

949 

913 

870 

823 

790 

751 

709 

666.5 

611 

556 

418 

492 

.-467 

410 

' 

S o u t h w e l l P l o t 

S w a y M o d e 

δ, 

100 

mm 

0.000 

0.060 

0.120 

0.185 

0.265 

0.350 

0.460 

0.595 

0.710 

0.860 

1.030 

1.180 

1.400 

1.570 

1.710 

1.900 

2.125 

2.390 

2.590 

3.015 

3.240 

3.590 

4.120 

4.680 

4.930 

5.360 

5.840 

6.250 

7.040 

8.090 

àt 

100P 

mm/kN 

0.000 

0.200 

0.200 

0.206 

0.221 

0.233 

0.256 

0.283 

0.296 

0.319 

0.343 

0.358 

0.389 

0.413 

0.428 

0.452 

0.483 

0.520 

0.540 

0.603 

0.623 

0.677 

0.763 

0.851 

0.880 

0.940 

1.007 

1.059 

1.173 

1.326 

Non-Sway Mode 

100 

mm 

0.000 

0.000 

0.005 

0.018 

0.028 

0.040 

0.045 

0.048 

0.055 

0.070 

0.075 

0.085 

0.100 

0.110 

0.125 

0.140 

0.158 

0.175 

0.205 

0.238 

0.270 

0.295 

0.300 

0.300 

0.325 

0.380 

0.410 

0.415 

0.470 

0.535 

100P 

mm/kN 

0.000 

0.000 

0.008 

0.019 

0.023 

0.027 

0.025 

0.023 

0.023 

0.026 

0.025 

0.026 

0.028 

0.029 

0.031 

0.033 

0.036 

0.038 

0.043 

0.048 

0.052 

0.056 

0.056 

0.055 

0.058 

0.067 

0.071 

0.070 

0.078 

0.088 



Appendix E Experimental Data and Results 337 
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«o 
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en 
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S 

Load vs. deflection at top & middle 
6.5n 

& 

5.& 

& 

Or 

3̂  

2.5-

2 

1.5-

1-

0.& 

b1 =b3 = 5 mm b2-6 mm 

u 300mm t | j 300mm ,, 

Loading * δ tof x Unloading 
D δ middle Δ w 

13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 

δ (mm) 

* ÛC 

* ÛC 

* Ac 

X * « 

X « t 

X * " t 

X * 4 

X * 4 I 

x aci 

X X] 

H05I 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAYJmp = 1.35 mm, NON-SWAY_imp = 0.12 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 330.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

2 300.0 6.0 13.0 73.44 209.00 69.67 117.71 0.360 

3 330.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 1234.98 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1468.91 kN*mm/rad 

Translational (Sway) Stiffness of frame : 15.96 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 5.265 6.2396 1.00 1.792 -12.836 -0.004 * Sway 

2 5.630 7.1350 1.00 -0.339 0.000 0.006 Non-Sway 

First YIELD Load = 5.664 kN 

First HINGE Load = 5.943 kN 

SQUASH Load = 22.477 kN 
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T e s t : 4oc2 
P l a s t i c B u c l i n g 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.3 

3.6 

3.8 

4 

4.2 

4.4 

4.6 

4.8 

5 

5.2 

5.4 

5.6 

5.8 

6 

6.02 

Loading 

Top 

reads 

1482 

1480.5 

1476 

1467 

1458.5 

1449 

1438 

1426 

1412.5 

1396 

1377 

1356 

1331 

1309 

1292 

1271.5 

1252.5 

1222 

1193 

1160.5 

1121 

1075 

1018 

950 

868 

730 

Mid 

reads 

368 

372.5 

378.5 

388 

396 

405 

416 

429 

442 

459 

478 

499 

523 

545 

562 

584.5 

610 

636.5 

670 

705 

746 

796 

858 

934 

1029 

1260 

Unloading 

Top 

reads 

1439 

1428 

1417 

1404 

1389 

1374 

1356 

1339 

1318 

1295 

1271 

1245 

1214 

1193 

1168 

1131 

1098 

1063 

1026 

980 

931 

883 

827 

755 

730 

730 

Mid 

reads 

427 

439 

451 

465 

481 

495 

514 

532 

553 

578 

605 

635 

668 

691 

718 

756 

789 

828 

868 

923 

982 

1040 

1114 

1210 

1260 

1260 

S o u t h w e l l P l o t 

S w a y M o d e 

δ, 

100 

mm 

0.000 

\ 0.015 

0.060 

0.150 

0.235 

0.330 

0.440 

0.560 

0.695 

0.860 

1.050 

1.260 

1.510 

1.730 

1.900 

2.105 

2.295 

2.600 

2.890 

3.215 

3.610 

4.070 

4.640 

5.320 

6.140 

7.520 

δ, 

100P 

mm/kN 

0.000 

0.050 

0.100 

0.167 

0.196 

0.220 

0.244 

0.267 

0.290 

0.319 

0.350 

0.382 

0.419 

0.455 

0.475 

0.501 

0.522 

0.565 

0.602 

0.643 

0.694 

0.754 

0.829 

0.917 

1.023 

1.249 

Non-Sway Mode 

δ,Λ/2 
100 

mm 

0.000 

0.038 

0.075 

0.125 

0.163 

0.205 

0.260 

0.330 

0.393 

0.480 

0.575 

0.680 

0.795 

0.905 

0.990 

1.113 

1.273 

1.385 

1.575 

1.763 

1.975 

2.245 

2.580 

3.000 

3.540 

5.160 

100P 

mm/kN 

0.000 

0.125 

0.125 

0.139 

0.135 

0.137 

0.144 

0.157 

0.164 

0.178 

0.192 

0.206 

0.221 

0.238 

0.248 

0.265 

0.289 

0.301 

0.328 

0.353 

0.380 

0.416 

0.461 

0.517 

0.590 

0.857 
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Load vs. deflection at top & middle 

% 

6.5n 

5.5̂  

5-

4.5^ 

Φ 

3.& 

3̂  

2.& 

2 

1.5-

1-

0.& 

D » 

D * Δ 

D Κ Δ 

α χ Α χ 

Π * Δ Χ 

• π Δ Χ 

D * Δ Χ 

Π * Δ Χ 

D U 4 Χ 

DK Δ χ 

Η ώ χ 

/.oacfrhgr * δΐ°Ρ χ unloading 
α «5 /77/Cfcfe A w 

6 , ' = 5/7W77 "V Ι #, _ #, _ e™™ 

>??/?/} 

. 314 mm . 314 mm . 
h + Η 

Ί έ â i 5 ë 7 ë â ïo ïï 12 

<5 ( "mm; 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_se ts=3 , SWAY_imp = -1.60 mm, NON-SWAY_imp =-0.90 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 340.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

2 314.0 6.0 13.0 73.44 209.00 69.67 117.71 0.360 

3 340.0 6.0 13.0 73.44 209.00 69.67 117.71 0.360 

Rot.Sym.Non-sway Rot.Antisym.Sway Transi.Sway 

Stiffness of frame : 1221.35 kN*mm/rad 1465.26 kN*mm/rad 17.933 N/mm. 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 5.640 6.7459 1.00 -0.333 0.000 0.006 Non-Sway 

2 5.643 6.7528 1.00 3.018 -20.600 -0.005 * Sway 

First YIELD Load = 4.835 kN 

First HINGE Load = 5.602 kN 

SQUASH Load = 22.477 kN 
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T e s t : 23oc2 
EIasto_Plastic Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.3 

3.6 

3.9 

4.2 

4.5 

4.8 

5.1 

5.4 

5.7 

6 

6.2 

6.4 

6.6 

6.8 

7 

7.2 

7.4 

7.6 

7.9 

8.1 

8.2 

8.3 

8.4 

8.5 

8.6 

8.7 

Loading 

Top 

reads 

690 

691 

692 

693.5 

695 

697 

700 

703 

707 

713 

719 

725 

731 

738.5 

746 

755 

766 

775 

786 

799 

811 

820 

831 

843 

854 

865 

876 

888 

899 

923 

929 

937 

945 

953 

961 

970 

978 

Mid 

reads 

1300 

1300 

1300 

1300.5 

1302.5 

1304 

1305.5 

1306 

1308 

1309 

1310.5 

1311.5 

1313 

1315 

1317 

1319 

1320.5 

1323 

1325 

1327 

1330 

1332 

1334 

1336 

1339 

1342 

1347 

1353 

1360 

1327 

1385 

1390 

1395 

1400 

1405 

1414 

1422 

Unloading 

Top 

reads 

697 

701 

705 

710 

716 

721 

729 

739 

745 

751 

758 

767 

777 

788 

801 

813 

825 

837 

854 

870 

892 

908 

923 

936 

944 

958 

965 

976 

984 

997.5 

1005 

1009 

1013 

1015 

1017 

1016 

1005 

Mid 

reads 

1307 

1310 

1310.5 

1311 

1311 

1311.5 

1311.5 

1311.5 

1312 

1313.5 

1314 

1315 

1315.5 

1316 

1316 

1317.5 

1318 

1320 

1321 

1322 

1323 

1324 

1325 

1328 

1334 

1340 

1347 

1352 

1361 

1373 

1381 

1388 

.1390 

1395 

1401 

1406 

1419' 

S o u t h w e l l P l o t 

S w a y M o d e 

δ, 

100 

'mm 

0.000 

0.010 

0.020 

0.035 

0.050 

0.070 

0.100 

0.130 

0.170 

0.230 

0.290 

0.350 

0.410 

0.485 

0.560 

0.650 

0.760 

0.850 

0.960 

1.090 

1.210 

1.300 

1.410 

1.530 

1.640 

1.750 

1.860 

1.980 

2.090 

2.330 

2.390 

2.470 

2.550 

2.630 

2.710 

2.800 

2.880 

δ, 

100/> 

mm/kN 

0.000 

0.033 

0.033 

0.039 

0.042 

0.047 

0.056 

0.062 

0.071 

0.085 

0.097 

0.106 

0.114 

0.124 

0.133 

0.144 

0.158 

0.167 

0.178 

0.191 

0.202 

0.210 

0.220 

0.232 

0.241 

0.250 

0.258 

0.268 

0.275 

0.295 

0.295 

0.301 

0.307 

0.313 

0.319 

0.326 

0.331 

Non-Sway Mode 

δ,-δ,/2 

100 

mm 

0.000 

0.005 

0.010 

0.023 

0.050 

0.075 

0.105 

0.125 

0.165 

0.205 

0.250 

0.290 

0.335 

0.393 

0.450 

0.515 

0.585 

0.655 

0.730 

0.815 

0.905 

0.970 

1.045 

1.125 

1.210 

1.295 

1.400 

1.520 

1.645 

1.435 

2.045 

2.135 

2.225 

2.315 

2.405 

2.540 

2.660 

100P 

mm/kN 

0.000 

0.017 

0.017 

0.025 

0.042 

0.050 

0.058 

0.060 

0.069 

0.076 

0.083 

0.088 

0.093 

0.101 

0.107 

0.114 

0.122 

0.128 

0.135 

0.143 

0.151 

0.156 

0.163 

0.170 

0.178 

0.185 

0.194 

0.205 

0.216 

0.182 

0.252 

0.260 

0.268 

0.276 

0.283 

0.295 

0.306 
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§ 

1&Π 

7-

& 

4 

2 

1 

Z-oaûf vs. deflection at top & middle 

Loading * (5 top 
α δ middle 

-3 

Χ κ 

X Si 

-2 

X * 

Χ 5K 

X * 

X * 

X X 

X » 

X * 

X X 

X 51« 

X X 

Unloading 

•3T 

6 2 = b 3 = 6 mm bi =5 mm 

CM 

300 mm 300 mm 

0 1 2~ 

<5 f/77/77; 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAYJmp = 1.05 mm, NON-SWAY_imp = -0.75 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 

2 

3 

260.0 

300.0 

260.0 

5.0 

6.0 

6.0 

13.0 

13.0 

13.0 

62.44 

73.44 

73.44 

125.70 

209.00 

209.00 

50.28 

69.67 

69.67 

81.45 

117.71 

117.71 

0.360 

0.360 

0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 1343.77 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1641.35 kN*mm/rad 

Translational (Sway) Stiffness of frame : 38.04 N/mm 

Solut 

E I G E N V A L U E S & E I G E N V E C T O R S 

kL Pc Cl C2 delta thêta A Mode-Case 

1 5.540 11.1290 1.00 2.566 -17.980 -0.007 

2 5.542 11.1352 1.00 -0.389 0.000 0.008 

First YIELD Load = 7.953 kN 

First HINGE Load = 9.335 kN 

SQUASH Load = 22.477 kN 

* Sway 

Non-Sway 
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T e s t : 25oc2 
Elastic_Plastic Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 

2.6 

2.8 

3 

3.2 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

4 

4.1 

4.2 

3.93 

Loading 

Top 

reads 

987 

988.5 

990 

991 

993 

995 

998.5 

1003.5 

1009 

1016 

1023 

1031.5 

1040 

1050 

1063 

1074.5 

1085.5 

1103 

1113.5 

1123 

1135 

1149.5 

1164 

1182 

1195 

1214 

1233 

Mid 

reads 

1148.5 

1150 

1151 

1152 

1152.5 

1154 

1155 

1156 

1157.5 

1159.5 

1162 

1164.5 

1166 

1171 

1175 

1180.5 

1187.5 

1193.5 

1197.5 

1203 

1210 

1218 

1229.5 

1241.5 

1263 

1290 

1463 

Unloading 

Top 

reads 

1008 

1019 

1026 

1033 

1038 

1044 

1052 

1059 

1068 

1078 

1087 

1098 

1109 

1122 

1139 

1155 

1178 

1198.5 

1210 

1220 

1231 

1236 

Mid 

reads 

1195 

1196 

1200 

1203 

1207 

1210 

1215 

1219.5 

1224.5 

1231 

1238 

1247.5 

1258 

1272 

1285 

132 

1323 

1350 

1368.5 

1385 

1405.5 

1428.5 

S o u t h w e l l P l o t 

S w a y M o d e 

100 

mm 

0.000 

* 0.015 

0.030 

0.040 

0.060 

0.080 

0.115 

0.165 

0.220 

0.290 

0.360 

0.445 

0.530 

0.630 

0.760 

0.875 

0.985 

1.160 

1.265 

1.360 

1.480 

1.625 

1.770 

1.950 

2.080 

2.270 

2.460 

«, 

100P 

mm/kN 

0.000 

0.075 

0.075 

0.067 

0.075 

0.080 

0.096 

0.118 

0.138 

0.161 

0.180 

0.202 

0.221 

0.242 

0.271 

0.292 

0.308 

0.341 

0.361 

0.378 

0.400 

0.428 

0.454 

0.488 

0.507 

0.540 

0.626 

Non-Sway Mode 

100 

mm 

0.000 

0.023 

0.040 

0.055 

0.070 

0.095 

0.123 

0.158 

0.200 

0.255 

0.315 

0.383 

0.440 

0.540 

0.645 

0.758 

0.883 

1.030 

1.123 

1.225 

1.355 

1.508 

1.695 

1.905 

2.185 

2.550 

4.375 

VV2 
1 0 0 P 

mm/kN 

0.000 

0.113 

0.100 

0.092 

0.088 

0.095 

0.102 

0.113 

0.125 

0.142 

0.158 

0.174 

0.183 

0.208 

0.230 

0.253 

0.276 

0.303 

0.321 

0.340 

0.366 

0.397 

0.435 

0.476 

0.533 

0.607 

1.113 
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-0.9 

Southwell Plot 
Sway Mode 

ξ tnt = -0.67 mm 

0.06 0.12 0.18 0.24 0.3 0.36 0.42 0.48 0.54 0.6 

δ/Ρ (mm/kN) 

S 
ζ 

«ο 

2.8 

2.4 

2 

1.6 

1.2 

0.8 

0.4 

0 4 

-0.4 

-0.8 

Southwell Plot 
Non - Sway Mode 

Ρ = 4.67kN 

en 

ξ. . = - 0.4 mm 

0.06 0.12 0.18 ,0.24 0.3 0.36 0.42 0.48 0.54 0.6 

Ô/P (mm/kN) 



Appendix E Experimental Data and Results 347 

§ 

Load vs. deflection at top & middle 
4.5n 

4 

3.5^ 

3̂  

2.5 

2 

1.&J 

1 

0.5] 

X 3ff 

X ÌÌ * 

LOa£/Ìh0 ο / J L I <"**** 

b1 =b3 = 3mm b2=5mm 

250 mm 250 mm 
μ -μ 

3 -2 -1 Ô 1 ì. 5 4 5 è 7 ^ 

<5 ( m m ; 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAYJmp = -0.67 mm, NON-SWAY_imp = -0.40 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 210.0 3.0 13.0 38.47 28.53 19.02 29.26 0.360 

2 250.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 210.0 3.0 13.0 38.47 28.53 19.02 29.26 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 920.69 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1112.57 kN*mm/rad 

Translational (Sway) Stiffness of frame : 25.34 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 5.944 4.4573 1.00 -0.171 0.000 0.005 Non-Sway 

2 6.423 5.2043 1.00 -14.263 88.629 -0.005 * Sway 

First YIELD Load = 3.442 kN 

First HINGE Load = 3.857 kN 

SQUASH Load = 13.848 kN 
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T e s t : 26oc2 
Elastic_PIastic Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.56 

Loading 

Top 

reads 

337 

344 

348 

354 

356.5 

361.5 

368 

376 

385 

395.5 

409 

418 

426 

435 

445 

456 

468 

481 

495 

511 

533 

558 

585 

617 

656 

710 

780 

891 

1085 

1276 

Mid 

reads 

1062.5 

1061.5 

1061 

1052.5 

1050 

1048.5 

1046 

1043 

1040 

1036 

1032 

1029 

1026 

1022 

1019 

1015 

1010 

1004 

997.5 

991 

981 

970 

955 

938 

914 

879 

827 

735 

548 

241 

Unloading 

Top 

reads 

396 

406 

418 

430 

442 

463 

472 

491 

512 

536 

563 

578 

599 

618 

645 

668 

697 

734 

772 

820 

880 

952 

1028 

1096 

1179 

Mid 

reads 

1005 

990 

982 

974 

967 

958 

947.5 

935 

921 

906 

887 

876 

862 

847 

828 

811 

789 

761 

730 

695 

647 

589 

522 

455 

372 

• 

S o u t h w e l l P l o t 

S w a y M o d e 

δ , 

100 

mm 

0.000 

\ 0.070 

0.110 

0.170 

0.195 

0.245 

0.310 

0.390 

0.480 

0.585 

0.720 

0.810 

0.890 

0.980 

1.080 

1.190 

1.310 

1.440 

1.580 

1.740 

1.960 

2.210 

2.480 

2.800 

3.190 

3.730 

4.430 

5.540 

7.480 

9.390 

δ , 

100P 

mm/kN 

0.000 

0.350 

0.275 

0.283 

0.244 

0.245 

0.258 

0.279 

0.300 

0.325 

0.360 

0.386 

0.405 

0.426 

0.450 

0.476 

0.504 

0.533 

0.564 

0.600 

0.653 

0.713 

0.775 

0.848 

0.938 

1.066 

1.231 

1.497 

1.968 

2.638 

Non-Sway Mode 

δ -δ,/2 

100 

mm 

0.000 

0.025 

0.040 

0.015 

0.028 

0.018 

0.010 

0.000 

0.015 

0.028 

0.055 

0.070 

0.080 

0.085 

0.105 

0.120 

0.130 

0.135 

0.140 

0.155 

0.165 

0.180 

0.165 

0.155 

0.110 

0.030 

0.140 

0.505 

1.405 

3.520 

δ , " àt/2 

ÎOOP 

mm/kN 

0.000 

0.125 

0.100 

0.025 

0.034 

0.018 

0.008 

0.000 

0.009 

0.015 

0.028 

0.033 

0.036 

0.037 

0.044 

0.048 

0.050 

0.050 

0.050 

0.053 

0.055 

0.058 

0.052 

0.047 

0.032 

0.009 

0.039 

0.136 

0.370 

0.989 
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Load vs. deflection at top & middle 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAY_imp = -0.65 mm, NON-SWAY_imp = -0.04 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 235.0 3.0 13.0 38.47 28.53 19.02 29.26 0.360 

2 400.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 235.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 580.93 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 682.39 kN*mm/rad 

Translational (Sway) Stiffness of frame : 21.38 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta theta_A Mode-Case 

1 5.818 3.4092 1.00 -0.237 0.000 0.006 Non-Sway 

2 6.777 4.6264 1.00 -3.967 23.289 -0.007 * Sway 

First YIELD Load = 2.827 kN 

First HINGE Load = 3.066 kN 

SQUASH Load = 13.848 kN 
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T e s t : 6N2 
Elastic - Plastic Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3 

2.5 

Loading 

Top 

reads 

1373 

1372 

1368.5 

1363 

1359 

1351.5 

1344 

1334 

1328 

1322 

1314 

1307 

1299 

1290 

1280 

1269 

1256 

1242 

1226 

1209 

1192 

1171 

1147 

1113 

1084 

Mid 

reads 

1121 

1126 

1134 

1143 

1152 

1165 

1180 

1197 

1208 

1218 

1231 

1244 

1259 

1273 

1290 

1309.5 

1332 

1360 

1390 

1425 

1464 

1516 

1578 

1675 

1945 

Unloading 

Top 

reads 

1311 

1305 

1298 

1287 

1275 

1262 

1249 

1233 

1225 

1214 

1205 

1195 

1183 

1171 

1158 

1136 

1114 

1095 

Mid 

reads 

1305 

1327 

1345 

1377 

1407 

1442 

1480 

1523 

1549 

1580 

1610 

1641 

1677 

1715 

1759 

1709 

1858 

1948 

< 

S o u t h w e l l P l o t 

S w a y M o d e 

δ , 

100 

mm 

0.000 

0.010 

0.045 

0.100 

0.140 

0.215 

0.290 

0.390 

0.450 

0.510 

0.590 

0.660 

0.740 

0.830 

0.930 

1.040 

1.170 

1.310 

1.470 

1.640 

1.810 

2.020 

2.260 

2.600 

2.890 

δ , 

100P 

mm/kN 

0.000 

0.050 

0.113 

0.167 

0.175 

0.215 

0.242 

0.279 

0.300 

0.319 

0.347 

0.367 

0.389 

0.415 

0.443 

0.473 

0.509 

0.546 

0.588 

0.631 

0.670 

0.721 

0.779 

0.867 

1.156 

Non-Sway Mode 

δ,Λ/2 
100 

mm 

0.000 

0.045 

0.108 

0.170 

0.240 

0.333 

0.445 

0.565 

0.645 

0.715 

0.805 

0.900 

1.010 

1.105 

1.225 

1.365 

1.525 

1.735 

1.955 

2.220 

2.525 

2.940 

3.440 

4.240 

6.795 

1 0 0 P 

mm/kN 

0.000 

0.225 

0.269 

0.283 

0.300 

0.333 

0.371 

0.404 

0.430 

0.447 

0.474 

0.500 

0.532 

0.553 

0.583 

0.620 

0.663 

0.723 

0.782 

0.854 

0.935 

1.050 

1.186 

1.413 

2.718 



Appendix E Experimental Data and Results 352 

I 
«o 

I 
£ 

2.7 π 

2.4 Η 

2.1 

1.8 

1.5-

1.2 

0.9 

0.6 

0.3 ] 

-0.3-

-0.6-

-0.9 

-1.2 J 

South well 
Sway Mode 

X 

\ I I i I 

Plot 

Pcs = 4.13 kN 

ξ, = -0.85 mm 
tot 

I 1 I I 

0.1 0.2 0.3 0.4 0.5 0.6 

δ/Ρ (mm/kN) 

0.7 0.8 0.9 

I 

.s 
1 
ì 

I 

Ì 

Southwell Plot 
Non - Sway Mode 

Pen - 3A9kN 

ξΜ = -0.85 mm 

0.3 0.6 0.9 · 1 . 2 1.5 1.8 2.1 2.4 2.7 

δ/Ρ (mm/kN) 



Appendix E Experimental Data and Results 353 

§ 

Load vs. deflection at top & middle 
3.3n 

3̂  

2.7 

2.M 

2.1 

1.8-

1.5-

1.2-

0.9^ 

0.6-

0.& 

* D 
* α 

X D 
* π 

* α 
Χί D Χ 

χ α χ 
# ο χ 

ïtf D Χ 
* D Χ 

K D Χ 
* D Χ 

* Π χ 

Χ D 

Load//7fir * ôtof x unloading 
α <î middle Δ " 

0 ÖÜ 1 ϊ ΐ £ Ζ5 5 3Ü5 4 Î 5 5 5Ì5 é 6 Ì 5 7 

<5 ( m m J 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAY_imp = -0.85 mm, NON-SWAY_imp = 0.85 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 235.0 3.0 13.0 38.47 28.53 19.02 29.26 0.360 

2 370.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 235.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 637.69 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 757.60 kN*mm/rad 

Translational (Sway) Stiffness of frame : 23.41 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 5.855 3.4533 1.00 -0.217 0.000 0.005 Non-Sway 

2 6.968 4.8910 1.00 -2.805 16.026 -0.006 * Sway 

First YIELD Load = 2.700 kN 

First HINGE Load = 3.001 kN 

SQUASH Load = 13.848 kN 
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T e s t : 18oc3 
Plastic Collapse Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.3 

3.6 

3.9 

4.2 

4.5 

4.8 

5 

5.2 

5.4 

5.6 

5.8 

6 

6.2 

6.4 

6.6 

6.8 

7 

7.2 

7.4 

7.6 

7.8 

8 

7.95 

Loading 

Top 

reads 

414 

421 

431 

437 

446.5 

457 

467 

478 

491 

503 

517 

533.5 

550.5 

570 

589 

612 

637.5 

657 

676 

699 

724 

752 

784.5 

818 

857 

898 

943 

994 

1052 

1122 

1204 

1307 

1473 

1985 

Mid 

reads 

1287 

1286 

1285 

1285 

1284.5 

1283.5 

1283.5 

1283 

1283 

1283 

1283 

1283 

1283 

1282 

1281 

1280 

1278 

1275 

1271 

1266 

1260 

1253 

1243.5 

1234 

1224 

1212 

1199 

1182 

1164 

1141 

1110 

1072 

1008 

799 

Unloading 

Top 

reads 

587 

603 

616 

634 

653 

672 

694 

717 

743 

770 

800 

833 

867 

905 

944 

997 

1052 

1090 

1137 

1187 

1260 

1310 

1390 

1460 

1528 

1587 

1642 

1720 

1790 

1866 

1925 

Mid 

reads 

1249 

1248 

1245 

1243 

1239 

1235 

1230 

1225 

1219 

1212 

1205 

1197 

1188 

1178 

1166 

1150 

1134 

1121 

1106 

1089 

1060 

1047 

1013 

987 

962 

942 

921 

894 

867 

839 

816 

S o u t h w e l l P l o t 

S w a y M o d 

100 

mm 

0.000 

t 0.070 

0.170 

0.230 

0.325 

0.430 

0.530 

0.640 

0.770 

0.890 

1.030 

1.195 

1.365 

1.560 

1.750 

1.980 

2.235 

2.430 

2.620 

2.850 

3.100 

3.380 

3.705 

4.040 

4.430 

4.840 

5.290 

5.800 

6.380 

7.080 

7.900 

àt 

100P 

mm/kN 

0.000 

0.233 

0.283 

0.256 

0.271 

0.287 

0.294 

0.305 

0.321 

0.330 

0.343 

0.362 

0.379 

0.400 

0.417 

0.440 

0.466 

0.486 

0.504 

0.528 

0.554 

0.583 

0.618 

0.652 

0.692 

0.733 

0.778 

0.829 

0.886 

0.957 

1.039 

Non-Sway Mode 

100 

mm 

0.000 

0.025 

0.065 

0.095 

0.138 

0.180 

0.230 

0.280 

0.345 

0.405 

0.475 

0.558 

0.643 

0.730 

0.815 

0.920 

1.028 

1.095 

1.150 

1.215 

1.280 

1.350 

1.418 

1.490 

1.585 

1.670 

1.765 

1.850 

1.960 

2.080 

2.180 

100P 

mm/kN 

0.000 

0.083 

0.108 

0.106 

0.115 

0.120 

0.128 

0.133 

0.144 

0.150 

0.158 

0.169 

0.178 

0.187 

0.194 

0.204 

0.214 

0.219 

0.221 

0.225 

0.229 

0.233 

0.236 

0.240 

0.248 

0.253 

0.260 

0.264 

0.272 

0.281 

0.287 
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S 

Load vs. deflection at top & middle 
9 i 

& 

7 

4 

3-1 

2 

1 

Loading χ δ top 
α δ middle 

X 
Unloading 

-18 -16 -14 -12 -10 -8 -6 -4 

5 f/77/77,} 

• û 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAY_imp = 2.20 mm, NON-SWAY_imp = -1.80 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 280.0 6.0 13.0 73.44 209.00 69.67 117.71 0.360 

2 300.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 280.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 802.89 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 980.22 kN*mm/rad 

Translational (Sway) Stiffness of frame : 19.03 N/mm 

Solut 

E I G E N V A L U E S & E I G E N V E C T O R S 

kL Pc Cl C2 delta theta_A Mode-Case 

1 3.932 8.0359 1.00 0.417 -5.935 -0.008 

2 4.842 12.1892 1.00 -0.878 0.000 0.015 

First YIELD Load = 6.145 kN 

First HINGE Load = 7.200 kN 

SQUASH Load = 26.437 kN 

* Sway 

Non-Sway 
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T e s t : 16oc3 
Plastic Collapse Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.3 

3.6 

3.8 

4 

4.2 

4.4 

4.6 

4.8 

5 

5.2 

5.4 

5.6 

5.8 

5.4 

Loading 

Top 

reads 

1173 

1177 

1184 

1197 

1212.5 

1231 

1252 

1274 

1300 

1326 

1358 

1393 

1433 

1470 

1503 

1544 

1595 

1650 

1710 

1784 

1871 

1977 

2109 

2220 

2500 

Mid 

reads 

1550 

1551.5 

1554.5 

1557.5 

1557.5 

1558 

1559 

1561 

1562 

1563 

1565 

1566 

1567.5 

1567.5 

1567 

1559.5 

1549 

1537 

1523 

1505 

1482 

1453 

1415 

1391 

1386 

Unloading 

Top 

reads 

1288 

1314 

1343 

1371 

1402 

1439 

1479 

1526 

1581 

1641 

1707 

1785 

1868 

1923 

1984 

2051 

2135 

2206 

2286 

2286 

2462 

Mid 

reads 

1586 

1586 

1587 

1587 

1587 

1586 

1583 

1576 

1566 

1555 

1543 

1527 

1510 

1499 

1487 

1475 

1458 

1442 

1425 

1405 

1390 

S o u t h w e l l P l o t 

S w a y M o d e 

100 

mm 

0.000 

0.040 

0.110 

0.240 

0.395 

0.580 

0.790 

1.010 

1.270 

1.530 

1.850 

2.200 

2.600 

2.970 

3.300 

3.710 

4.220 

4.770 

5.370 

6.110 

6.980 

δ ( 

100P 

mm/kN 

0.000 

0.133 

0.183 

0.267 

0.329 

0.387 

0.439 

0.481 

0.529 

0.567 

0.617 

0.667 

0.722 

0.782 

0.825 

0.883 

0.959 

1.037 

1.119 

1.222 

1.342 

Non-Sway Mode 

δ , - δ , / 2 

100 

mm 

0.000 

0.035 

0.100 

0.195 

0.273 

0.370 

0.485 

0.615 

0.755 

0.895 

1.075 

1.260 

1.475 

1.660 

1.820 

1.950 

2.100 

2.255 

2.415 

2.605 

2.810 

1 0 0 P 

mm/kN 

0.000 

0.117 

0.167 

0.217 

0.227 

0.247 

0.269 

0.293 

0.315 

0.331 

0.358 

0.382 

0.410 

0.437 

0.455 

0.464 

0.477 

0.490 

0.503 

0.521 

0.540 
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Load vs. deflection at top & middle 
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D Δ 
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T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAY_imp = 2.25 mm, NON-SWAY_imp = 1.80 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 270.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

2 350.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 270.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 667.41 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 799.47 kN*mm/rad 

Translational (Sway) Stiffness of frame : 17.68 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 4.407 6.5299 1.00 0.733 -7.436 -0.008 * Sway 

2 5.075 8.6594 1.00 -0.690 0.000 0.013 Non-Sway 

First YIELD Load = 4.800 kN 

First HINGE Load = 5.712 kN 

SQUASH Load = 22.477 kN 
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T e s t : 12oc3 
P l a s t i c C o l l a p s e 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.3 

3.6 

3.9 

4.2 

4.5 

4.8 

5 

5.2 

5.4 

5.6 

5.8 

6 

6.1 

6.2 

6.3 

5.95 

5.38 

Loading 

Top 

reads 

726 

733 

741 

750 

760 

774 

789 

803 

818 

838.5 

859 

879.5 

907 

939 

965 

1015 

1058 

1122 

1195 

1262 

1343 

1443 

1579 

1703 

1820 

2015 

2222 

2303 

Mid 

reads 

1170.5 

1165 

1159 

1152.5 

1145.5 

1137.5 

1129 

1120 

1110 

1098.5 

1086 

1073 

1056 

1036 

1018 

988 

960 

923 

881 

840 

790 

729 

649 

575 

504 

386 

183 

6 

Unloading 

Top 

reads 

900 

916 

936 

962 

990 

1018 

1052 

1091 

1131 

1180 

1246 

1323 

1412 

1525 

1672 

1852 

2076 

2186 

2257 

Mid 

reads 

1007 

997 

982 

964 

943 

922 

898 

869 

841 

807.5 

758 

705 

646 

571 

476 

360 

215 

131 

63 

, 

S o u t h w e l l P l o t 

S w a y M o d e 

100 

mm 

0.000 

* 0.070 

0.150 

0.240 

0.340 

0.480 

0.630 

0.770 

0.920 

1.125 

1.330 

1.535 

1.810 

2.130 

2.390 

2.890 

3.320 

3.960 

4.690 

δ, 

100P 

mm/kN 

0.000 

0.233 

0.250 

0.267 

0.283 

0.320 

0.350 

0.367 

0.383 

0.417 

0.443 

0.465 

0.503 

0.546 

0.569 

0.642 

0.692 

0.792 

0.902 

Non-Sway Mode 

100 

mm 

0.000 

0.020 

0.040 

0.060 

0.080 

0.090 

0.100 

0.120 

0.145 

0.158 

0.180 

0.208 

0.240 

0.280 

0.330 

0.380 

0.445 

0.495 

0.550 

100P 

mm/kN 

0.000 

0.067 

0.067 

0.067 

0.067 

0.060 

0.056 

0.057 

0.060 

0.058 

0.060 

0.063 

0.067 

0.072 

0.079 

0.084 

0.093 

0.099 

0.106 
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§ 

Load vs. deflection at top & middle 
6n 
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T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAYjmp = 1.50 mm, NON-SWAY_imp = 0.28 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 330.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

2 300.0 6.0 13.0 73.44 209.00 69.67 117.71 0.360 

3 330.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 1234.98 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1468.91 kN*mm/rad 

Translational (Sway) Stiffness of frame : 15.96 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 5.265 6.2396 1.00 1.792 -12.836 -0.004 

2 5.630 7.1350 1.00 -0.339 0.000 0.006 

First YIELD Load = 5.580 kN 

First HINGE Load = 5.904 kN 

SQUASH Load = 22.477 kN 

* Sway 

Non-Sway 
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T e s t : 4oc3 
Plastic Collapse Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.3 

3.6 

3.9 

4.2 

4.4 

4.6 

4.8 

5 

5.2 

5.4 

5.6 

5.8 

5.95 

5.2 

4.4 

Loading 

Top 

reads 

1440 

1438 

1434 

1427 

1417 

1407 

1397 

1385 

1372 

1356 

1335 

1311 

1282 

1248 

1210 

1180 

1146 

1101 

1043 

997 

938 

850 

760 

650 

640 

645 

Mid 

reads 

426 

431 

438 

447 

459 

471 

487 

499 

515 

535 

560 

587 

618 

658 

700 

730 

772 

818 

877 

930 

998 

1091 

1200 

1310 

1600 

1805 

Unloading 

Top 

reads 

1244 

1227 

1203 

1178 

1152 

1130 

1094 

1057.5 

1020 

981 

930 

880 

823 

757 

693 

645 

645 

645 

645 

645 

645 

645 

645 

645 

645 

645 

Mid 

reads 

842 

874 

913 

955 

998 

1035 

1088 

1145 

1204 

1267 

1344 

1423 

1515 

1621 

1731 

1805 

1805 

1805 

1805 

1805 

1805 

1805 

1805 

1805 

1805 

1805 

S o u t h w e l l P l o t 

S w a y M o d e 

100 

mm 

\ 0.000 

0.020 

0.060 

0.130 

0.230 

0.330 

0.430 

0.550 

0.680 

0.840 

1.050 

1.290 

1.580 

1.920 

2.300 

2.600 

2.940 

3.390 

3.970 

4.430 

5.020 

5.900 

6.800 

7.900 

8.000 

7.950 

δ, 

100P 

ratn/kN 

0.000 

0.067 

0.100 

0.144 

0.192 

0.220 

0.239 

0.262 

0.283 

0.311 

0.350 

0.391 

0.439 

0.492 

0.548 

0.591 

0.639 

0.706 

0.794 

0.852 

0.930 

1.054 

1.172 

1.328 

1.538 

1.807 

Non-Sway Mode 

100 

mm 

0.000 

0.040 

0.090 

0.145 

0.215 

0.285 

0.395 

0.455 

0.550 

0.670 

0.815 

0.965 

1.130 

1.360 

1.590 

1.740 

1.990 

2.225 

2.525 

2.825 

3.210 

3.700 

4.340 

4.890 

7.740 

9.815 

δ , - δ , / 2 

1 0 0 P 

mm/kN 

0.000 

0.133 

0.150 

0.161 

0.179 

0.190 

0.219 

0.217 

0.229 

0.248 

0.272 

0.292 

0.314 

0.349 

0.379 

0.395 

0.433 

0.464 

0.505 

0.543 

0.594 

0.661 

0.748 

0.822 

1.488 

2.231 
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«ο 
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§ 

Load vs. deflection at top & middle 
7n 

6.S 

fr 

5.5^ 

& 

4.5^ 

Ar 

3.& 

3^ 

2.& 

2 

1.5H 

1-

0.5-

α 
π 

α 

α * 

D * 

α χ 

D * 

•κ 

« 
Β 

a χ 

Β Χ 

/.oactfbfir * / ^ Ρ χ ^/oai///7p 
π δ middle Δ * 

£/ " 5 mm % ι Ρ 

Η \ Ι b2- b3 - 6mm 

^ 314 mm ~~3Î4m~m~~®h 

~\ i Γ ï 5 è ì â â fô ï i 12 

<5 f /nmj 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAYJmp =-1.50 mm, NON-SWAY_imp =-1.10 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 340.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

2 314.0 6.0 13.0 73.44 209.00 69.67 117.71 0.360 

3 340.0 6.0 13.0 73.44 209.00 69.67 117.71 0.360 

Rot.Sym.Non-sway Rot.Antisym.Sway Transi.Sway 

Stiffness of frame : 1221.35 kN*mm/rad 1465.26 kN*mm/rad 17.933 N/mm. 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 5.640 6.7459 1.00 -0.333 0.000 0.006 Non-Sway 

2 5.643 6.7528 1.00 3.018 -20.600 -0.005 * Sway 

First YIELD Load = 4.904 kN 

First HINGE Load = 5.652 kN 

SQUASH Load = 22.477 kN 
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T e s t : 230c3 
Plastic Collapse Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

2.1 

2.4 

2.7 

3 

3.3 

3.6 

3.9 

4.2 

4.5 

4.8 

5.1 

5.4 

5.7 

6 

6.3 

6.6 

6.8 

7 

7.2 

7.4 

7.6 

7.8 

8 

8.2 

8.4 

8.6 

3.65 

Loading 

Top 

reads 

692 

693 

694.5 

696 

698 

700 

704 

706.5 

710 

712 

715 

718 

721 

724 

730 

734 

736.5 

739.5 

743 

747.5 

751.5 

756 

762 

766 

776 

775 

778 

782 

788 

790 

791 

794 

797 

870 

Mid 

reads 

1321 

1322 

1324 

1325 

1327 

1330 

1334 

1335 

1338 

1341 

1346 

1349 

1354 

1359 

1364 

1369 

1376 

1382 

1389 

1396 

1404.5 

1412.5 

1424 

1435 

1443 

1455 

1468 

1481 

1493 

1510 

1529 

1547 

1567 

2599 

Unloading 

Top 

reads 

772 

780 

788 

796 

804 

812 

822 

832.5 

843 

852 

859 

867 

872 

Mid 

reads 

2200 

2230 

2259 

2288 

2319 

2347 

2378 

2410 

2443 

2480 

2514 

2552 

2599 

·' 

S o u t h w e l l P l o t 

S w a y M o d e 

δ, 

100 

mm 

0.000 

0.010 

10.025 

0.040 

0.060 

0.080 

0.120 

0.145 

0.180 

0.200 

0.230 

0.260 

0.290 

0.320 

0.380 

0.420 

0.445 

0.475 

0.510 

0.555 

0.595 

0.640 

0.700 

0.740 

0.840 

0.830 

0.860 

0.900 

0.960 

0.980 

0.990 

1.020 

1.050 

1.780 

àt 

100P 

mm/kN 

0.000 

0.033 

0.042 

0.044 

0.050 

0.053 

0.067 

0.069 

0.075 

0.074 

0.077 

0.079 

0.081 

0.082 

0.090 

0.093 

0.093 

0.093 

0.094 

0.097 

0.099 

0.102 

0.106 

0.109 

0.120 

0.115 

0.116 

0.118 

0.123 

0.123 

0.121 

0.121 

0.122 

0.488 

Non-Sway Mode 

δ,Λ/2 
100 

mm 

0.000 

0.015 

0.043 

0.060 

0.090 

0.130 

0.190 

0.213 

0.260 

0.300 

0.365 

0.410 

0.475 

0.540 

0.620 

0.690 

0.773 

0.848 

0.935 

1.028 

1.133 

1.235 

1.380 

1.510 

1.640 

1.755 

1.900 

2.050 

2.200 

2.380 

2.575 

2.770 

2.985 

13.670 

1 0 0 P 

mm/kN 

0.000 

0.050 

0.071 

0.067 

0.075 

0.087 

0.106 

0.101 

0.108 

0.111 

0.122 

0.124 

0.132 

0.138 

0.148 

0.153 

0.161 

0.166 

0.173 

0.180 

0.189 

0.196 

0.209 

0.222 

0.234 

0.244 

0.257 

0.270 

0.282 

0.298 

0.314 

0.330 

0.347 

3.745 
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K5 

Southwell Plot 
Sway Mode 

Pcs - 12.5 kN 

£tnt= -0.65 mm 

0.015 0.03 0.045 0.06 0.075 0.09 0.105 0.12 0.135 

δ/Ρ (mm/kN) 
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Load vs. deflection at top & middle 

% 

*1 

7 

4 

$\ 

2 

-2 -1 

Loading 

b2 =b3=*6mm 

δ top 

δ middle 

bi = 5 mm 

X 

Δ 
Unloading 

300 mm 300 mm 

Ύ~τ ~ë Ì l à iO 11 12 Ì3 T4 

(5 (mm) 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets= 3, SWAYJmp = 0.65 mm, NON-SWAY_imp =-1.03 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 

2 

3 

260.0 

300.0 

260.0 

5.0 

6.0 

6.0 

13.0 

13.0 

13.0 

62.44 

73.44 

73.44 

125.70 

209.00 

209.00 

50.28 

69.67 

69.67 

81.45 

117.71 

117.71 

0.360 

0.360 

0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 1343.77 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1641.35 kN*mm/rad 

Translational (Sway) Stiffness of frame : 38.04 N/mm 

Solut kL 

E I G E N V A L U E S 

Pc Cl C2 

& E I G E N V E C T O R S 

delta thêta A Mode-Case 

1 5.540 11.1290 1.00 2.566 -17.980 -0.007 

2 5.542 11.1352 1.00 -0.389 0.000 0.008 

First YIELD Load = 7.431 kN 

First HINGE Load = 8.946 kN 

SQUASH Load = 22.477 kN 

* Sway 

Non-Sway 
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T e s t : 25oc3 
Plastic Collapse Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 

2.6 

2.8 

3 

3.2 

3.4 

3.6 

3.7 

3.8 

3.9 

2.53 

Loading 

Top 

reads 

1007 

1009 

1010 

1012 

1014 

1017.5 

1022.5 

1028.5 

1035.5 

1043.5 

1052.2 

1062.5 

1072 

1084 

1098 

1113 

1128 

1148 

1173 

1186 

1200 

1209 

1288 

Mid 

reads 

1094.5 

1096.5 

1100 

1103 

1106.5 

1109 

1112 

1116 

1120.5 

1126 

1132.5 

1141 

1151.5 

1163 

1178.5 

1194 

1216 

1245 

1281 

1303 

1331 

1370 

1842 

Unloading 

Top 

reads 

1050 

1064 

1072 

1080 

1088 

1096 

1103.5 

1112 

1123 

1135 

1149 

1163 

1179 

Mid 

reads 

1484 

1502 

1520 

1540 

1561 

1586 

1611 

1639 

1671 

1704 

1741 

1780 

1818 

·' 

S o u t h w e l l P l o t 

S w a y M o d e 

δ , 

100 

mm 

0.000 

'0.020 

0.030 

0.050 

0.070 

0.105 

0.155 

0.215 

0.285 

0.365 

0.452 

0.555 

0.650 

0.770 

0.910 

1.060 

1.210 

1.410 

1.660 

1.790 

1.930 

2.020 

2.810 

àt 

100P 

mm/kN 

0.000 

0.100 

0.075 

0.083 

0.088 

0.105 

0.129 

0.154 

0.178 

0.203 

0.226 

0.252 

0.271 

0.296 

0.325 

0.353 

0.378 

0.415 

0.461 

0.484 

0.508 

0.518 

1.111 

Non-Sway Mode 

100 

mm 

0.000 

0.030 

0.070 

0.110 

0.155 

0.198 

0.253 

0.323 

0.403 

0.498 

0.606 

0.743 

0.895 

1.070 

1.295 

1.525 

1.820 

2.210 

2.695 

2.980 

3.330 

3.765 

8.880 

100P 

mm/kN 

0.000 

0.150 

0.175 

0.183 

0.194 

0.198 

0.210 

0.230 

0.252 

0.276 

0.303 

0.338 

0.373 

0.412 

0.463 

0.508 

0.569 

0.650 

0.749 

0.805 

0.876 

0.965 

3.510 
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Ì 

4.&1 

4 

3.5^ 

3̂  

2.5^ 

2 

1.5H 

1 

0.5^ 

Load vs. deflection at top & middle 
Loading * ôtoP x Unloading 

η δ middle Δ " 

—| 1 1 Κ 1] J χ τ (* 1 -ρ 1 j j t n 

-3 -2 -1 0 1 2 3 4 5 è 7 8 9 10 
δ (mm) 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAYJmp = -0.73 mm, NON-SWAY_imp = -0.70 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 210.0 3.0 

2 250.0 5.0 

3 210.0 3.0 

13.0 38.47 28.53 19.02 

13.0 62.44 125.70 50.28 

13.0 38.47 28.53 19.02 

29.26 0.360 

81.45 0.360 

29.26 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 920.69 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 1112.57 kN*mm/rad 

Translational (Sway) Stiffness of frame : 25.34 N/mm 

E I G E N V A L U E S 

Solut kL Pc Cl C2 

E I G E N V E C T O R S 

delta thêta A Mode-Case 

1 5.944 4.4573 1.00 -0.171 0.000 0.005 

2 6.423 5.2043 1.00 -14.263 88.629 -0.005 

First YIELD Load = 3.366 kN 

First HINGE Load = 3.807 kN 

SQUASH Load .= 13.848 kN 

Non-Sway 

* Sway 
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T e s t : 26oc3 
Plastic Collapse Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 

2.6 

2.7 

2.8 

2.9 

3 

3.1 

3.2 

3.3 

3.4 

3.5 

3.07 

Loading 

Top 

reads 

396 

397.5 

401.5 

409 

415 

422 

431 

442 

455 

472 

492.5 

517.5 

550 

591 

619 

646 

679 

713 

761.5 

820 

891 

983 

1120 

1240 

Mid 

reads 

1006 

1007 

1006 

1008.5 

986 

980 

973 

965 

955 

943 

928 

910 

886 

855 

835 

811 

785 

756 

714 

663 

600 

508 

377 

30 

Unloading 

Top 

reads 

465 

478 

495 

515 

534 

558 

583 

612 

646 

686 

740 

800 

876 

968 

1020 

1085 

1152 

Mid 

reads 

877 

847 

830 

810 

790 

767 

743 

710 

673 

630 

574 

510 

431 

329 

273 

199 

121 

S o u t h w e l l P l o t 

S w a y M o d e 

100 

mm 

t 0.000 

0.015 

0.055 

0.130 

0.190 

0.260 

0.350 

0.460 

0.590 

0.760 

0.965 

1.215 

1.540 

1.950 

2.230 

2.500 

2.830 

3.170 

3.655 

4.240 

4.950 

5.870 

7.240 

8.440 

δ, 

100P 

mm/kN 

0.000 

0.075 

0.138 

0.217 

0.238 

0.260 

0.292 

0.329 

0.369 

0.422 

0.483 

0.552 

0.642 

0.750 

0.826 

0.893 

0.976 

1.057 

1.179 

1.325 

1.500 

1.726 

2.069 

2.749 

Non-Sway Mode 

100 

mm 

0.000 

0.018 

0.028 

0.090 

0.105 

0.130 

0.155 

0.180 

0.215 

0.250 

0.298 

0.353 

0.430 

0.535 

0.595 

0.700 

0.795 

0.915 

1.093 

1.310 

1.585 

2.045 

2.670 

5.540 

1 0 0 P 

mm/kN 

0.000 

0.088 

0.069 

0.150 

0.131 

0.130 

0.129 

0.129 

0.134 

0.139 

0.149 

0.160 

0.179 

0.206 

0.220 

0.250 

0.274 

0.305 

0.352 

0.409 

0.480 

0.601 

0.763 

1.805 
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s 

Load vs. deflection at top & middle 

3.fr 

3.2r 

2.8-

2.4^ 

2 

λ.$\ 

1.2 

o.a 

Loading * δ toP x unloading 
α δ middle Δ " 

* ο 

* α 

iti ο 

« ο 

-10 -9 -6 -5 -4 -3 

δ (mm) 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets = 3, SWAY_imp = -1.00 mm, NON-SWAY_imp = -0.30 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 235.0 3.0 13.0 38.47 28.53 19.02 29.26 0.360 

2 400.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 235.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 580.93 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 682.39 kN*mm/rad 

Translational (Sway) Stiffness of frame : 21.38 N/mm 

E I G E N V A L U E S & E I G E N V E C T O R S 

Solut kL Pc Cl C2 delta thêta A Mode-Case 

1 5.818 3.4092 1.00 -0.237 0.000 0.006 

2 6.777 4.6264 1.00 -3.967' 23.289 -0.007 

First YIELD Load = 2.600 kN 

First HINGE Load = 2.910 kN 

SQUASH Load - 13.848 kN 

Non-Sway 

* Sway 
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T e s t : 6N3 
Plastic Collapse Buckling 

E x p e r i m e n t a l D a t a 

Load 

Ρ 

kN 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.2 

Loading 

Top 

reads 

1313 

1309 

1305 

1297 

1288 

1277 

1269 

1261 

1252.5 

1243 

1235 

1224 

1213 

1201 

1189 

1178 

1163 

1148 

1129 

1108 

1083 

1072 

Mid 

reads 

1318 

1331 

1348 

1369 

1391 

1418 

1435 

1453 

1472 

1492 

1511 

1534 

1560 

1589 

1624 

1658 

1712 

1746 

1800 

1869 

1956 

2067 

Unloading 

Top 

reads 

1276 

1267.5 

1258 

1247 

1234 

1220 

1212 

1204 

1196 

1186 

1176 

1167 

1154 

1139 

1120 

1103 

1088 

Mid 

reads 

1445 

1474.5 

1506 

1540 

1580 

1624 

1647 

1675 

1704 

1737 

1771 

1805 

1846 

1886 

1928 

1974 

2021 

S o u t h w e l l P l o t 

S w a y M o d e 

δ , 

100 

mm 

^0.000 

0.040 

0.080 

0.160 

0.250 

0.360 

0.440 

0.520 

0.605 

0.700 

0.780 

0.890 

1.000 

1.120 

1.240 

1.350 

1.500 

1.650 

1.840 

2.050 

2.300 

2.410 

δ, 

100P 

mm/kN 

0.000 

0.200 

0.200 

0.267 

0.313 

0.360 

0.400 

0.433 

0.465 

0.500 

0.520 

0.556 

0.588 

0.622 

0.653 

0.675 

0.714 

0.750 

0.800 

0.854 

0.920 

1.095 

Non-Sway Mode 

100 

mm 

0.000 

0.110 

0.260 

0.430 

0.605 

0.820 

0.950 

1.090 

1.238 

1.390 

1.540 

1.715 

1.920 

2.150 

2.440 

2.725 

3.190 

3.455 

3.900 

4.485 

5.230 

6.285 

δ , - δ ^ 

1 0 0 P 

mm/kN 

0.000 

0.550 

0.650 

0.717 

0.756 

0.820 

0.864 

0.908 

0.952 

0.993 

1.027 

1.072 

1.129 

1.194 

1.284 

1.363 

1.519 

1.570 

1.696 

1.869 

2.092 

2.857 
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«2 

Load vs. deflection at top & middle 
2.6η 
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X • 

χ α 
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Load/hsr * / * * x Un/oad/n^ 
π δ middle Δ W 

0 05 Γ ΪΤβ 2̂  2Ϊ5 5 Ì 5 4 Ϊ 5 6 δ!δ ë~ 

δ (mm) 

.5 

T H E O R E T I C A L D A T A & R E S U L T S 

PROP_sets= 3, SWAY_imp =-1.35 mm, NON-SWAY_imp = 2.05 mm 

M E M B E R P R O P E R T I E S 

MEM L b d A I Zel Zpl Y.str 

1 235.0 3.0 13.0 38.47 28.53 19.02 29.26 0.360 

2 370.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

3 235.0 5.0 13.0 62.44 125.70 50.28 81.45 0.360 

Rotational SYMMETRIC (Non-sway) Stiffness of frame : 637.69 kN*mm/rad 

Rotational ANTISYMMETRIC (Sway) Stiffness of frame : 757.60 kN*mm/rad 

Translational (Sway) Stiffness of frame : 23.41 N/mm 

E I G E N V A L U E S 

Solut kL Pc Cl C2 

E I G E N V E C T O R S 

delta thêta A Mode-Case 

1 5.855 3.4533 1.00 -0.217 0.000 0.005 Non-Sway 

2 6.968 4.8910 1.00 -2.805 16.026 -0.006 * Sway 

First YIELD Load = 2.377 kN 

First HINGE Load = 2.768 kN 

SQUASH Load = 13.848 kN 
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Appendix F 

Photos 

Photo 1. Rig layout before testing 

Photo 2. 

Mid-block, Load-cell, Jack 
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Photo 7. Detail of pulley mechanism and end-block 

Photo 8. A typical case of proportional loading 
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Photo 9. The new frame. Load-cell, bridge and weights for imperfections 

•> * ΰ&ΐϋ&ϋ 

Photo 10. Details of the new frame. End-blocks, supports 
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Appendix G 

G.l Components of the computer program 

Defining the computational problem in its substance, the main task of the 

program was to find the general solution of Eq. (3.23) coming from the governing 

differential equation of the deflected shape of the column. This means, taking the 

boundary conditions into account, to solve the eigenvalue problem, expressed by the 

matrix equation (3.26). 

The roots of the non-dimensional determinant of Eq. (3.28) was therefore the 

first task, so that the critical loads for all modes could be calculated. The program, 

facing a more general problem, calculates a determinant with 10 rows, by using the 

Gauss elimination, until the determinant is reduced to one having three only rows. 

Then, asking for the number of eigenvalues required, the program sets up the 

determinant and calculates it for both symmetric and antisymmetric stiffness of the 

ends of the column, by assigning to kL a zero value-

If the result is not zero, an initial increment of the value of kL is given until 

the determinant becomes zero or changes its sign, when, an opposite (negative) half 

increment is given. This iteration is repeated until the value of the determinant is 

less than the given accuracy (107). 

The value of kL is then printed as the first root of the determinant and a new 

increment, equal to the initial is given. 

This procedure stops only when the required number of solutions for both 

stiffnesses is obtained. 

Then, taking into account the boundary condition for delta, the program 

keeps only the solutions that give zero delta for symmetric stiffness and non-zero 
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for antisymmetric ones. 

The flow chart below shows the above computational procedure, the 

solutions of which give the eigenvalues, i.e. the critical loads. 

Enter No of Eigenvalues required 

Figure G.l 

The second task was the calculation of the Eigenvectors. Using the matrix 

equation (3.26) the program sets the value of 1 to the first unknown C{ and 

calculates the other three by solving the system of three linearly independent 

equations of the matrix. Then, from the general solution of Eq. (3.23), and for the 

particular values of the already found unknowns, the characteristic equation is 

generated. This equation is indefinite as to amplitude but definite as to shape. 

For each eigenvalue, the characteristic equation gives the corresponding 
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shape of the critical mode (Eigenvector). For each Eigenvector, the computer 

calculates the deflection at 100 different points at equal distance, and, after having 

found the maximum deflection, divides all the deflections by this value vmax, 

normalizing thus the critical mode shape. Then the normalized mode shape is 

multiplied by the modal amplitude factor to give the corresponding deflection due 

to the axial load. This amplitude factor for'the 1st critical mode has been taken as 

L Le (pc y/2 

w, = , while for the ith mode (i =i 2,3,..), w. = w; , — - = w,. , —— 
1 1000 * ' , _ 1 L , _ 1 P, 

ei-l \ ci J 

As a next step, the program, asks for the current axial load, enabling thus for 

the drawing of the deflection and bending moment diagram of the column. This 

facility was eventually isolated from the main program. 

The last and most important step, however, was the calculation of the 

ultimate (buckling) load, Pc, of the column, when all the demanded critical modes 

are contributing. On this step, Pc is considered either as a bound solution (upper for 

plastic hinge formation, lower for initiation of yielding), or as the first critical load 

(frame or member instability). The algorithm through which this step is realised is 

the following: 

a) Initially a zero axial load, P, is given. This load, which is increased at 

each step by small increments, dP, is then compared with the first critical load, Pc I 

and the squash load, Ρ . 

b) If Ρ < P c l and Ρ < Ρ then the following c, d and e steps are executed, 

otherwise the first critical load or the squash load are respectively announced as 

failure load. 

c) The contribution that each one of the demanded critical modes has, 

i) in the deflection of the column (buckling shape) 

ii) in the moment due to first yield, M fy and plastic hinge, Mp h and 

iii) in the elastic non-linear bending moment, Mnl, is calculated. 

d) Mnl is compared with M fy. If Mnl < Mfy, then the values of P, Mnl, M f 
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and Mph are recorded in a file and a new increment of load is added to the previous 

value. This procedure is repeated until either Mnl = Mfy, or Mnl > Mfy, when a 

negative half increment, -dP/2 is added, so that the load level for initiation of 

yielding should be exactly located, when after it is announced. 

e) Provided that Ρ < Pcr, the load-level for plastic hinge formation is similarly 

located and announced, when further calculations stop. 

In conclusion the program is able to give the following results: 

1) The demanded number of Eigenvalues and Eigenvectors. 

2) In the region of the above Eigenvalues, the different values that A(kL) 

takes. A(kL) is here the determinant of the coefficients of the equations which 

describe the boundary conditions of the ends of the column. 

3) For each critical mode, the corresponding mode-case (Sway or Non-sway), 

along with the unknown values of: 

a) the translation at the top end of the column 

b) the rotation at top end and 

c) the coefficient C2 

in terms of the coefficient Ct, which has been taken as unit. 

4) As an alternative, for a certain load level, the buckling shape and the 

bending moment diagram of the column, along with the contribution of each 

demanded critical mode to both shape and diagram. 

5) The buckling shape and the moment diagram when first yield is initiating. 

6) The buckling shape and the moment diagram when plastic hinge is 

formatting. 

7) The non-linear elasto-plastic path from which the ultimate loading 

capacity of the column is obtained. 

8) The load level, Pb, at which failure occurs, along with the location of the 

cross section and the corresponding maximum bending moment. 

A full listing of this program is given below. 
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G.2 Listing of Program 

*C* PROGRAM EIGENVALUE ANALYSIS 

*C:: Changes of E, in lines 453, 470 & 571:::::: 

C M A I N * P R O G R A M 

C According to the PARAMETER please make a CHANGE in 

lines : 

*..97-101, ... 161-162, ...172-175, ... 405, 408, 412, 

PROGRAM Buckling with S_NS_imp 

IMPLICIT DOUBLE PRECISION (A-H,P-Z) 

DIMENSION PL(3), PA(3),PI(3),PZ(3),PY(3),VM(50), CMODE 

(50,4) 

D I M E N S I O N 

P P ( 5 0 ) , P K ( 5 0 ) , B U F F E R ( 5 0 ) , B U F F E R 2 ( 5 0 ) , P B ( 3 ) , P D ( 3 ) 

DIMENSION CRB(2) ,CRT(2) ,CT(2) ,IMODE(50) ,SA(3,2) , XXI(50) , 

PLZ (3) 

LOGICAL SFLAG 

CHARACTER MODECASE(2)*10 

CHARACTER*6 FNAMEl , FNAME2 

PARAMETER (N=4) 

open (9,file='er') 

OPEN (13,FILE='RES') 

OPEN (15,FILE='EP') 

open (23,'BL') 

open (31, file='P_C ) 

MODECASE(1) = ' * Sway' 

MODECASE(2) = ' Non-Sway' 

*NIT is a number showing the current iteration, starting from 

1 

NIT = 1 

C** INPUT OF DATA 
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* : :KNIT is the demanded number of iterations 

*::VINCR is the given increase of parameter, 

iteration 

READ *, M , KNIT, XSWAY, XNONS, VINCR, VINCR2 

at each 

WRITE 

write 

*,89) M,XSWAY,XNONS 

9,231) 'Τ Η E 0 R Ε;Τ I C A L D A T A 

I 

R E S U L Τ S' 

write (9,98) 

write (9,*) 

231 format(13x,a) 

WRITE (13,89) M,XSWAY,XNONS 

WRITE (9,99) M,XSWAY,XNONS 

write (*,432) 

* write (9,433) 

write (13,432) 

write (9,*) 

99 FORMAT (3X,'PROP_sets = ',12, 

mm, NON-SWAY_imp = ',f5.2,' mm') 

89 FORMAT (6X,'PROP_sets = ',12, 

mm, NON-SWAY_imp = ',f5.2,' mm') 

98 format (12x,77("-")) 

433 format (2x,100("-")) 

432 format (5x,68("-")) 

WRITE ( * , 1 0 1 ) ' M E M B E R 

WRITE (*,101) '============= 

WRITE (13,101) 

WRITE (13,101) 

WRITE (9,117) 

WRITE (9,117) '=============== 

101 FORMAT (20X,A) 

117 format (28x,a) 

WRITE (*,1021) 'MEM', 'L' 

Ί ' , 'Zel' , 'Zpl' , 'Y.str' 

WRITE (13,102) 'MEM', 'L' 

Ί ' , 'Zel' , 'Zpl' , 'Y.str' 

WRITE (9,118) 'MEM', 'L' 

SWAY_imp = ',f5.2,' 

SWAY_imp = ' , f5.2, ' 

P R O P E R T I E S ' 

M E M B E R P R O P E R T I E S ' 

M E M B E R P R O P E R T I E S ' 

•d' 

'd' 

Ά' , 

Ά' , 

Ά' , 
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Ί ' , 'Zel' , 'Zpl' , 'Y.str' 

118 FORMAT (OX, A, 4X, A, 7X, A, 8X, A, 8X, A, 10X, A, 10X, A, 7x, a, 6X, A) 

102 FORMAT (IX, A, 5X, A, 7X, A, 8X, A, 8X, A, 8X, A, 8X, A, 7x, a, 5X, A) 

1021 FORMAT (2X, A, 5X, A, 7X, A, 8X, A, 8X, A, 8X, A, 8X, A, 7x, a, 5X, A) 

WRITE (*,105) 

WRITE (13,105) 

WRITE (9,125) 

12 5 format (Ox,93("-")) 

DO 10,1=1,M \ 

C READ *, PL(I) ,PA(I) , PI(I),PZ(I),PY(I) 

READ *, PL(I), PB(I), PD(I), PY(I) 

c========================================================= 

c In case the ccross section is RECTANGULAR ignore the 

following calculations 

c until the first following 3 starsi*), which have to be 

activated. 

c Details of circular segment of radius 4.3 mm 

c ANG is half of circular sector's angle in RADS, GAP is the 

thick of segment, 

c and VER is chord's distance from centre. 

VER=SQRT(4.3**2-(PB(I)/2)**2) 

GAP=4.3-VER 

ANG=ACOS(VER/4.3) 

e PARTA is the area of two segments attached to the RESTA 

rectangular area. 

PARTA=2*(4.3**2)*(ANG-SIN(ANG)*COS(ANG)) 

RESTA=(PD(I)-2*GAP)*PB(I) 

PA(I)=PARTA+RESTA 

c PARTI is the moment of inertia of both segments, RESTI the 

rect. mom of in. 

PARTI=.2 666*(4.3**4)*(ANG**5)*(1-.4762*(ANG**2)+.1111*(ANG**4)) 

RESTI=(PD(I)-2*GAP)*(PB(I)**3)/12 

PI(I)=PARTI+RESTI 

c PZ(I) is the section's modulus, coming from moment of 

inertia. PZ(I)=PI(I)/(PB (I)/2.) 
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* PLZ(I) is the plastic section modulus 

PLZ(I)=1.5*PB(I)*PARTA/4+(PD(I)-2*GAP)*PB(I)**2/4 

PA(I)=PB(I)*PD(I) 

* PI(I)=PD(I)*(PB(I)**3)/12 

* PZ(I)=PD(I)*(PB(I)**2)/6 

WRITE (*,1031) I,PL(I),PB(I),PD(I),PA(I),PI(I),PZ(I), 

PLZ(I),PY(I) 

WRITE (13,103) I, PL(I) ,PB(I) ,PD(I) , PA(I) ,PI(I) , PZ(I) , 

PLZ(I),PY(I) t 

WRITE (9,123) I,PL(I) ,PB(I) ,PD(I) ,PA(I) ,PI(I) ,PZ(I) , 

PLZ (I) ,PY(I) 

103 FORMAT (IX,12,2X,F7.2,IX,F7.2,2x,f7.2,IX,F8.2,2X,f8.2, 

IX,f8.2,2x,f8.2,3X,F6.3) 

123 FORMAT (2X, 12,3X,F6.1,IX,F6.1,3x,f6.1,IX,F8.2 , 2X, f8.2 , 

IX,f8.2,2x,f8.2,4X,F6.3) 

1031 FORMAT (2X,12,2X,F7.2,IX,F7.2,2x,f7.2,IX,F8.2,2X,f8.2, 

IX,f8.2,2x,f8.2,3X,F6.3) 

10 CONTINUE 

READ *, X0 , DXO , ACC , MAXI 

READ *, NS , NDX,IGRAPH,ISCALE 

********************* Changing the parameter 

*************** write (23,181) 'W_s-n', 'P_fy','P_ph' 

write (23,83) 

83 format (2x,32("-")) 

81 format (3X,A,7X,A,4(6X,A)) 

181 format (4X,A,6X,A,8x,a) 

write (31,82) 

82 format (52("-")) 

CALL STIFFNESS(SA,CRB,CRT,CT,PI,PL) 

WRITE (*,) 

write (13,) 

write (9,) 

write (9,77 5)'Rot.Sym.Non-sway','Rot.Antisym.Sway', 

'Transi.Sway' 

write (13,765)'Rot.Sym.Non-sway','Rot.Antisym.Sway', 

'Transi.Sway' 
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write (* , 765) 'Rot.Sym.Non-sway', 'Rot.Antisym.Sway', 

'Transi.Sway' 

775 format(28x,a,5x,a,4x,a) 

765 format(25x,a,4x,a,3x,a) 

write (9,774) 

write (13,764) 

write (*,764) 

774 format (27x,73("-")) 

7 64 format (24x,52("-")) 

write (9,766)'Stiffness of frame :', SA(1,2),' 

kN*mm/rad', 

$SA(1,1),' kN*mm/rad',SA(3,1)*1000,' N/mm.' 

write(13,766)'Stiffness of frame :', SA(1,2),' 

kN*mm/rad', 

$SA(1,1),' kN*mm/rad',SA(3,1)*1000,' N/mm.' 

766 format (2x, a, f9.2 , a, f10.2,a,lx,f8.3,a) 

write (*,766)'Stiffness of frame :', SA(1,2),' 

kN*mm/rad', 

$SA(1,1),' kN*mm/rad',SA(3,1)*1000,' N/mm.' 

write (13,763) 

write (9,763) 

7 63 format( ) 

print 

798 format (4x,a,5x,a,2(3x,a)) 

797 format (lx,51("-")) 

796 format (2x,f6.2,4x,f8.2,6x,f8.2,6x,f8.3) 
Q* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C** END OF INPUT 
Q* ******************************* * 

C** SOLVE EIGENVALUE PROBLEM 
Q* ******************************** * 

CALL EIGENPROBLEM (X0,DXO,NS,MAXI,PL,PI,PP,PK,CMODE, 

1 IMODE,SA,CRB,CRT,CT,ACC,SFLAG) 
(2* ********************** * 

C** OUTPUT RESULTS 
Q*********************** * 

w r i t e ( * , 3 4 ) ' E I G E N V A L U E S & E I G E N V E C 
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Τ O R S ' 

w r i t e ( 9 , 3 7 ) ' E I G E N V A L U E S & E I G E N V E C 

T O R S ' 

3 7 FORMAT(18X,A) 

w r i t e ( 1 3 , 3 4 ) ' E I G E N V A L U E S & E I G E N V E 

C Τ Ο R S ' 

34 FORMAT(14X,A) 

WRITE(*,35) 

35 FORMAT (13X,53("=")) 

WRITE (13,35) '. 

WRITE (9,38) 

3 8 FORMAT (17X,45("=")) 

WRITE (13,229)'Solut','kL','Pc','Cl','C2','delta', 

'theta_A', 'Mode-Case' 

WRITE (9,239)'Solut','kL','Pc','Cl','C2','delta', 

'theta_A','Mode-Case' 

239 FORMAT (A5,5X,A2,2(8X,A2),8X,A2,7X,A5,4X,A7,4X,A9) 

WRITE (*,226)'Solut','kL','Pc','Cl','C2','delta', 

'theta__A' , 'Mode-Case' 

226 FORMAT (2X,A5,5X,A2,2(8X,A2),7X,A2,7X,A5,4X,A7,3X,A9) 

229 FORMAT (A5,5X,A2,2(8X,A2),7X,A2,7X,A5,4X,A7,4X,A9) 

WRITE (*,105) 

WRITE(13,105) 

write (9,125) 

DO 13,NSCOUNT=l,NS 

WRITE (*,227) NSCOUNT, PK(NSCOUNT) ,PP(NSCOUNT) , 

1 (CMODE(NSCOUNT,L),L=1,N) ,MODECASE(IMODE(NSCOUNT)) 

WRITE (13,228) NSCOUNT, PK(NSCOUNT) ,PP(NSCOUNT) , 

1 (CMODE(NSCOUNT,L),L=1,N) ,MODECASE(IMODE(NSCOUNT)) 

WRITE (9,238) NSCOUNT, PK(NSCOUNT) ,PP(NSCOUNT) , 

1 (CMODE(NSCOUNT,L),L=1,N) ,MODECASE(IMODE(NSCOUNT)) 

13 CONTINUE 

227 FORMAT (3X,12,2X,F8.3,2X,F9.4,2X,F7.2,3(2X,F8.3),2X,AIO) 

228 FORMAT (IX,12,2X,F8.3,2X,F9.4,2X,F7.2,3(2X,F8.3),3X,AIO) 

238 FORMAT (2X,12,2X,F8.3,IX,F9.4,2X,F7.2,3(2X,F8.3),3X,AIO) 

BOX=XSWAY-VINCR 

BOX2 =XNONS-VINCR2 
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947 XSWAY=BOX+VINCR 

XNONS=BOX2+VINCR2 

IF (NIT .NE. 1) THEN 

write ( *,) 

WRITE (*,92) 

write ( *,) 

write (13,) 

WRITE (13,92) 

write (13,) 

92 FORMAT (80 ("*")) \ 

WRITE (13,91) 'Run ',ΝΙΤ,') For SWAY_imp W_s = 

',XSWAY,', and 

+NON-SWAY_imp W_n = ',XNONS,' mm, are:' 

WRITE (*,91) 'Run ',ΝΙΤ,') For SWAY_imp W_s = 

',XSWAY,', and 

+NON-SWAY_imp W_n = ',XNONS,' mm, are:' 

91 FORMAT (3x,A,i2,2(A,F5.2),A) 

77 FORMAT (4X,A,F7.2,A,4X,A,F8.2,A,4X,A,F7.2,A,4X,A,F6 . 2) 

78 FORMAT (2X,A,F7.2,A,4X,A,F8.2,A,4X,A,F7.2,A,4X,A,F6.2) 

END IF 

* 

-* NDX is the denominator of F-Yield Load, defining the 

increment of axial 

* load, which is put by the program at each stage of 

Elasto_Plastic Path. 

* 

-105 FORMAT ( 79 ("-")) 

111 FORMAT (IX,22("=")) 

113 FORMAT (26X,22("=")) 

121 FORMAT (27X,A,12,A,F5.2) 

778 format (6X,A,10X,A,3(8X,A)) 

779 format (2X,35 ("-")) 

*C** CALCULATES MODESHAPES AND BENDING MOMENTS IF REQUIRED 

IF (IGRAPH .EQ.-l) STOP 

IF (.NOT.SFLAG) THEN 
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WRITE (*,204) 

STOP 

END IF 

204 FORMAT (' ',26X,'NO SOLUTIONS FOUND') 

X1 = 0 

X2 = 0 

XMAX=0 

C* NORMALIZE MODE SHAPES & LOCATE MAXIMUM MOMENTS 

P=PP(1) 

* XSWAY,XNONS are imperfections for the sway and non sway 

mode 

* IF ((XSWAY .EQ. 0.0 ) .AND. (XNONS .EQ. 0.0)) THEN 

* XXI(1)=PL(1)/1000 

* XXI(2)=XXI(1)*SQRT(PP(1)/PP(2)) 

* ELSE 

XXI(1)=XSWAY 

XXI(2)=XNONS 

* END IF 

IF (ISCALE .EQ. -1) THEN 

DO 206, 1=3,NS,2 

XXI(I)=XXI(I-2) 

2 06 CONTINUE 

DO 207,1=4,NS,2 

XXI(I)=XXI(I-2) 

2 07 CONTINUE 

ELSE 

DO 208, 1=3,NS,2 

XXI(I)=XXI(I-2)*SQRT(PP(I-2)/PP(I)) 

2 08 CONTINUE 

DO 209,1=4,NS,2 

XXI(I)=XXI(I-2)*SQRT(PP(I-2)/PP(I)) 

2 09 CONTINUE 

END IF 

CALL NORMALIZE (NS,NDX,SA,IMODE,CMODE,VM, 

1 PP,PI,PL) 
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Q* *********************************************************** * 

C* CALCULATE BUCKLING LOAD (FIRST YIELD & COLLAPSE) 

Q * * * * * * * * * * * * * * * * * * * -k it -k it -k -k -k -k -k -k -k -k -k -k -k * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C* FIRST YIELD CALCULATIONS 

WRITE (15,306) 'P' , 'Mfy','Mph' , 'Non-lin.El.Mom.', 

'Location X' 

WRITE (15,105) 

306 FORMAT (6X,A,14X,A,13X,A,7X,A,3X,A) 

* 

* Variable NDX of next line defines the increment of Ρ in 

maximazation. 

* 

DXX=PY(1)*PA(1)/NDX 

DP=DXX 

PFY=0 

PFH=0 

P=-DP 

1200 P=P+DP 

IF (P .GT.PP(l)) THEN 

WRITE (*,1221) 'Elastic FAILURE Load = ',ΡΡ(Ι) ,'kN' 

WRITE (13,1221) 'Elastic FAILURE Load = ',ΡΡ(Ι), 'kN' 

WRITE (9,1121) 'Elastic FAILURE Load = ',ΡΡ(Ι), 'kN' 

GOTO 1340 

END IF 

SM1=SMFY(P,PA(1),PZ(1),PY(1)) 

SM2=SMP(P,PA(1),PZ(1),PY(1)) 

SMOM=0 

DO 1210 , 1=1,NS 

SMOM=SMOM+ALPHA(I,PP(I),PI(1),XMAX,CMODE,VM(I)) 

1 *P*PP(I)*XXI(I)/(PP(I)-P) 

1210 CONTINUE 

CALL MAXIMIZE ( P, NS , NDX, CMODE, λ/Μ, 

1 PP,PI,PL,XXI,Xl,X2,XMAX,SMOM) 

SMOM = ABS(SMOM) 

1211 FORMAT (7X,'P = ',F6.3,IX,'kN , M_max = 

',F7.3,1X,'kN*mm , 

+ X = ',F7.3,IX,'mm .') 
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IF (ABS(SMOM-SMl) .LE.ACC) GOTO 1220 

IF (SMOM .GT.SM1) THEN 

P=P-DP 

DP=DP/2 

GOTO 12 00 

ELSE 

WRITE(15,1201) P,SM1,SM2,SMOM,XMAX 

GOTO 12 00 

END IF 

12 2 0 PFY=P '< 

WRITE (*,1221) ' First YIELD Load = ',PFY, 'kN' 

WRITE (13,1221) ' First YIELD Load = ',PFY, 'kN' 

WRITE (9,1121) ' First YIELD Load = ',PFY, 'kN' 

WRITE (15,1201) Ρ,SMI,SM2,SMOM,XMAX 

1221 FORMAT (/,19X,A23,F8.3,2X,A2) 

1121 FORMAT (/,27X,A23,F8.3,2X,A2) 

C* PLASTIC HINGE FORMATION 

DP=DXX 

1300 P=P+DP 

IF (P .GT.PP(l)) THEN 

WRITE (*,1221) 'Elastic FAILURE Load = ',ΡΡ(Ι) ,'kN' 

WRITE (13,1221) 'Elastic FAILURE Load = ',ΡΡ(Ι) ,'kN' 

WRITE (9,1121) 'Elastic FAILURE Load = ',ΡΡ(Ι) ,'kN' 

GOTO 1340 

END IF 

SMl=SMFY(P,PA(l),PZ(1),PY(1)) 

SM2 =SMP(Ρ,PA(1) ,PZ(1) ,PY(1) ) 

SMOM=0 

CALL MAXIMIZE (P,NS,NDX,CMODE,VM, 

1 PP,PI,PL,XXI,XI,X2,XMAX,SMOM) 

SMOM=ABS(SMOM) 

IF (ABS(SMOM-SM2) .LE.ACC) GOTO 1320 

IF (SMOM .GT.SM2) THEN 

P=P-DP 

DP=DP/2 

GOTO 1300 

ELSE 
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WRITE(15,1201) Ρ,SMI,SM2,SMOM,XMAX 

GOTO 13 00 

END IF 

1320 PFH=P 

WRITE (13,1221) ' 

WRITE (*,1221) 

WRITE (9,1121) ' 

First HINGE Load = 

First HINGE Load = 

First HINGE Load = ' 

, P F H , 

, P F H , 

PFH, 

' k N 

' k N 

' k N ' 

WRITE (15,1201) Ρ,SMI,SM2,SMOM,XMAX 

WRITE (*,1221) 

',PY(1)*PA(1),'kN' \ 

WRITE (13,1221) 

',PY(1)*PA(1),'kN' 

WRITE (9,1121) ' SQUASH Load = 

1201 FORMAT (IX,F8.3,4(F16.3)) 

1202 FORMAT (IX,F8.3,2(F16.3)) 

C 

C* REMAINDER OF PLASTIC AND ELASTIC SURFACE 

DP=DXX 

1340 P=P+DP 

IF (P.GE. PY(1)*PA(1)+.001) GOTO 1350 

SM1=SMFY(P,PA(1),PZ(1),PY(1)) 

SM2=SMP(P,PA(1),PZ(1),PY(1)) 

WRITE(15,1202) P,SMl,SM2 

GOTO 1340 

SQUASH Load 

SQUASH Load 

,PY(1)*PA(1),'kN' 

C--

C* END OF ELASTO-PLASTIC ANALYSIS 

£********************************************************* 

C* PREPARE GRAPHICS FILE FOR MODE SHAPES AND B.MOMENTS 

Q* ************************************** * ******* * ******** * 

13 50 CONTINUE 

DO 1600 , JJ=1,2 

DX=PL(1)/NDX 

IF (JJ.EQ.l) THEN 

P=PFY 

FNAMEl = 'FYS' 

FNAME2 = 'FYM' 

ELSE 



Appendix G Listing of Program 399 

P=PFH 

FNAMEl= 'PHS' 

FNAME2 ='PHM' 

END IF 

OPEN (12 ,FILE=FNAME1) 

OPEN (14,FILE=FNAME2) 

IF (JJ.EQ.l) THEN 

WRITE (12,901)'X','Utotal','Ufy_l','Ufy_2','Ufy_3', 

'Ufy_4','Ufy_5' 

WRITE (12,109) \ 

WRITE (14,901) 'X' , 'Mtotal', 'Mfy_l' , 'Mfy_2', 'Mfy_3' , 

' Mf y_4 ' , ' Mf y__5 ' 

WRITE (14,109) 

901 FORMAT (2(6X,A), 6(5X,A)) 

109 FORMAT (78 ("-")) 

ELSE 

WRITE (12,901)'X','Utotal','Uph_l','Uph_2','Uph_3', 

'Uph_4','Uph_5' 

WRITE (14,901) 'X' , 'Mtotal', 'Mph_l', 'Mph_2' , 'Mph_3' , 

'Mph_4','Mph_5' 

WRITE (12,109) 

WRITE (14,109) 

END IF 

X=-DX 

DO 92 0,J=1,NDX+1 

X=X+DX 

SUM =0 

SMOM=0 

DO 910,1=1,NS 

BUFFER(I)= P*XXI(I)/(PP(I)-P)*U(I,PP(I),X,CMODE,SA(3, 

IMODE(I)),SA(2,IMODE(I)), PL(1),PI(1))/VM(I) 

*:: : BUFFER(I) is the array of normalized buckling shape 

SUM=SUM+ BUFFER(I) 

* : : :BUFFER2(I) is the array of Non-linear Bend. Mom. for each 

mode.... 

BUFFER2 ( I ) =ALPHA ( I,'PP ( I ) , PI ( 1 ) , X, CMODE, λ/Μ ( I ) ) 

1 *P*PP(I)*XXI(I)/(PP(I)-P) 
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SMOM=SMOM+BUFFER2(I) 

910 CONTINUE 

IF (SMOM .GE. SMAXBP) THEN 

X1=X 

SMAXBP=SMOM 

END IF 

IF (SMOM .LE. SMAXBN) THEN , 

X2=X 

SMAXBN=SMOM 

END IF \ 

if (jj.eq.2) goto 929 

929 continue 

WRITE (12,902) X, SUM, (BUFFER(I) ,I=1,NS) 

WRITE (14,903) X, SMOM, (BUFFER2(I) ,I=1,NS) 

92 0 CONTINUE 

902 FORMAT (1X,F8.2, 10(2X,F8.3)) 

903 FORMAT (1X,F8.2, 10(2X,F8.3)) 

CLOSE (12) 

CLOSE (14) 

1600 CONTINUE 

777 FORMAT (IX,F8.2,4(IX,F12.3)) 

IF (PFY .NE. 0) THEN 

IF (PFH .NE. 0) THEN 

WRITE (23,443) XNONS,PFY,PFH 

443 FORMAT (2X,F6.2,2(5X,F7.3)) 

ELSE 

WRITE (23,443) XNONS,PFY 

END IF 

END IF 

BOX=XSWAY 

BOX2 =XNONS 

NIT=NIT+1 

IF (NIT .LE. KNIT) THEN 

GOTO 947 

END IF 

STOP 

END 
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C* END OF PROGRAM 

C* SUBROUTINE EIGENPROBLEM 

C* SOLVES THE EIGENVALUE PROBLEM 

SUBROUTINE EIGENPROBLEM (X0,DXO,NS,MAXI,PL,PI,PP 

*,PK,CMODE,IMODE,SA,CRB,CRT,CT,ACC,SFLAG) 

IMPLICIT DOUBLE PRECISION (A-H,P-Z) 

DIMENSIONA (10,10) ,PL(3), PI(3) 

DIMENSION CMODE (50, 4) , PPl(50) ,PK(50) 

DIMENSION CRB( 2 ) ,CRT(2),CT(2),IMODE(50),SA(3,2) 

LOGICAL SFLAG 

PARAMETER (N=4) 

X=X0 

SFLAG = .FALSE. 

JF=0 

C*** STIFFNESS CALCULATIONS 

CALL STIFFNESS(SA,CRB,CRT,CT,PI,PL) 

X=X0 

DO 23 6,NSCOUNT =1,INT((NS+1)/2) 

C* FIND ANTISYMMETRIC SOLUTIONS 

IMODE(NSCOUNT)=l 

8 CALLFINDS(N,A,X,DX0,CRB(1),CRT(1),CT(1),PL(1),CMODE 

(NSCOUNT,1)l,CMODE(NSCOUNT,2),CMODE(NSCOUNT,3),CMODE(NSCOUNT, 

4),ACC,MAXI,JF) 

IF (JF.EQ.-l) THEN 

PRINT , 'MAX. ITERATIONS EEXCEEDED ..INCREASE MAXI 

,INCREMENT ' 

STOP 

ELSE 

SFLAG = .TRUE. 

END IF 

IF (ABS(CMODE(NSCOUNT,3)) .LE.1D-5) GOTO 8 

PK(NSCOUNT)=X 

PP(NSCOUNT)= 195.*(PI(1))*X**2/(PL(1))**2 

IMODE(NSCOUNT)=1 

2 3 6 CONTINUE 
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x=xo 
DO 215,NSCOUNT =INT((NS+1)/2)+1,NS+1 

7 CALLFINDS(N,A,X,DX0,CRB(2),CRT(2),CT(2),PL(1),CMODE 

(NSCOUNT,1)l,CMODE(NSCOUNT,2),CMODE(NSCOUNT,3),CMODE(NSCOUNT, 

4) , ACCMAXI, JF) 

IF (JF.EQ.-l) THEN 

PRINT , 'MAX. ITERATIONS EEXCEEDED ..INCREASE MAXI 

,INCREMENT ' 

STOP 

ELSE l< 

SFLAG = .TRUE. 

END IF 

IF (ABS(CMODE(NSCOUNT,3)) .GE.lD-5) GOTO 7 

PK(NSCOUNT)=X 

PP(NSCOUNT)= 195.*(PI(1))*X**2/(PL(1))**2 

IMODE(NSCOUNT)=2 

* WRITE (*,227) PK(NSCOUNT) ,PP(NSCOUNT) , 

* 1 (CMODE(NSCOUNT,L),L=1,N) ,IMODE(NSCOUNT) 

215 CONTINUE 

C***** ..SORTING BEGINS HERE .... 

DO 12, I=NS,1,-1 

DO 12, J=1,I 

IF (PP(J) .GT. PP(J+1)) THEN 

CALL SWAP (PP(J),PP(J+1)) 

CALL SWAP (PK(J),PK(J+1)) 

CALL SWAP (CMODE(J,1),CMODE(J+1,1)) 

CALL SWAP (CMODE(J,2),CMODE(J+l,2)) 

CALL SWAP (CMODE(J,3),CMODE(J+l,3)) 

CALL SWAPI (IMODE(J),IMODE(J+l)) 

CALL SWAP (CMODE(J,4),CMODE(J+l,4)) 

END IF 

12 CONTINUE 

C 

C* SORTING ENDS HERE 

RETURN 

END 
Q************************************************* 
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C** SUBROUTINE WHICH NORMALIZES THE MODE-SHAPES 

SUBROUTINE NORMALIZE (NS,NDX,SA,IMODE,CMODE,VM, 

+ PP,PI,PL) 

IMPLICIT DOUBLE PRECISION (A-H,P-Z) 

DIMENSION PL(3) ,PI(3 ) ,VM(5 0) ,CMODE(50,4) 

DIMENSION PP(50) ,IMODE(50),SA(3,2) 

DX=PL(1)/NDX 

DO 900,1=1,NS 

VM(I)=0 t 

X=-DX 

DO 900,J=1,NDX+1 

X=X+DX 

IF (VM(I) .LE. ABS(U(I,PP(I),X,CMODE,SA(3,IMODE(I)), 

1 SA(2,IMODE(I)),PL(1),PI(1)))) THEN 

VM(I) = ABS(U(I,PP(I),X,CMODE,SA(3,IMODE(I)),SA(2, 

IMODE(I)),PL(1),PI(1))) 

END IF 

900 CONTINUE 

RETURN 

END 

c 

C: : : NORMALIZATION ENDS HERE 

C : : : SEARCH FOR MAX. MOMENTS AND POSITIONS 

SUBROUTINE MAXIMIZE (P,NS,NDX,CMODE,VM, 

1 ΡΡ,ΡΙ,PL,XXI,X1,X2,XMAX,SMAX) 

IMPLICIT DOUBLE PRECISION (A-H,P-Z) 

DIMENSION PL(3),PI(3),VM(50),CMODE(50,4) 

DIMENSION PP(50) ,BUFFER2(50),XXI(50) 

DX=PL(1)/NDX 

SMAXBP=0 

SMAXBN=0 

X1 = 0. 

X2 = 0. 

X=-DX 
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DO 62 0,J=1,NDX+1 

X=X+DX 

SMOM=0 

DO 610,1=1,NS 

605 CONTINUE 

BUFFER2(I)=ALPHA(I,PP(I),PI(1),X,CMODE,VM(I)) 

l *P*PP(I)*xxi(i)/(PP(I)-p) ; 

SMOM=SMOM+BUFFER2(I) 

610 CONTINUE 

IF (SMOM .GE. SMAXBP) THEN 

X1=X 

SMAXBP=SMOM 

ELSE IF (SMOM .LE. SMAXBN) THEN 

X2=X 

SMAXBN=SMOM 

ELSE 

END IF 

62 0 CONTINUE 

IF (ABS(SMAXBP) .GT. ABS(SMAXBN)) THEN 

XMAX=X1 

SMAX = SMAXBP 

ELSE 

XMAX=X2 

SMAX = SMAXBN 

END IF 

RETURN 

END 
Ç* ********************************************************** * 

*C:: SUBROUTINE STIFNESS: CALCULATES THE STIFFNESSES OF THE 

FRAME FOR ANY MODE 

(2* ********************************************************** * 

* SUBROUTINE STIFFNESS (SA,CRB,CRT,CT,PI,PL) 

IMPLICIT DOUBLE PRECISION (A-H,P-Z) 

DIMENSION SA(3,2),CRB(2),CRT(2),CT(2),PI(3),PL(3) 

E=195. 

e=E 

q=PI(2) 
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r=PI(3) 

t=PL(2) 

p=PL(3) 

* χ = Ca for symmetric case 

x=222 0*e*q*(555*p*q*t**2+2*(2*q*(2*r*(t**2-15*t+3 00)-8325*t** 

2)+185*r*(t-60)*( t**2-30*t+900)))/(1110*p*q*(2*q*(t**2-3 0*t+6 

00) +185* (t- 60)* (t**2-30*t+900) )+16*jq**2* (2*r* ( t**2-45*t+90 0) -

8325*(t**2-30*t+600))+4440*q*(t-60)*(r*(t**2-60*t+1500)-2775* 

(t**2-3 0*t+900))+1.02675*10**5*r*(t-60)**4) 

EE= (E*PI(2))/(PL(2)-60) I 

H= PI(2)*(PL(l)-60)/(PI(3)*(PL(2)-60)) 

SA(1,2)=x 

SA(2,2)=SA(1,2) 

* y = Ca' 

y=222 0*e*q*(185*p**3*q*t**2+2*p**2*(2*q*(2*r*(t**2-15*t+300)-

8325*t**2)+185*r*(t-60)* (t**2-30*t+900))-240*p*q*t**2*(r-832 5 

)+4800*q*t**2*(r-8325))/(370*p**3*q*(2*q*(t**2-3 0*t+600)+185* 

(t-60)*(t**2-30*t+900))+p**2*(16*q**2*(2*r*(t**2-45*t+900 )-83 

25*(t**2-30*t+600))+4440*q*(t-60)*(r*(t**2-60*t+1500)-2775*(t 

**2-3 0*t+900))+102675*r* (t-60)**4)-480*p*q*(r-8325)*(2*q*(t** 

2-3 0*t+600)+185*(t-60)*(t**2-30*t+900))+9 600*q*(r-8325)*(2*q* 

(t**2-3 0*t+600)+185*(t-60)*(t**2-30*t+9 00))) 

SA(3,2)=48*EE/((3+2*H)*(PL(1)-60)**2) 

CT(2)= SA(3,2)*(PL(1))**3/(E*PI(1)) 

CRB(2)=SA(1,2)*PL{1)/(E*PI(1)) 

CRT(2)=CRB(2) 

* SA(1,1)=12*EE*(2+H)/(3+2*H) 

SA(l,l)=y 

SA(2,1)=SA(1,1) 

* ζ = Ka*L3 /4E 

z=222 0*p*q*r*(2*q*(t**2-30*t+600)+185*(t-60)*(t**2-30*t+900)) 

/(37 0*p**3*q*(2*q*(t**2-3 0*t+600)+185*(t-60)*(t**2-3 0*t+90 0)) 

+p**2*(16*q**2*(2*r*(t**2-45*t+900)-8325*(t**2-30*t+600))+444 

0*q*(t-60)*(r*(t**2-60*t+1500)-2775*(t**2-30*t+900))+1.02675* 

10**5*r*(t-60)**4)-480*p*q*(r-8325)*(2*q*(t**2-3 0*t+600)+185* 

(t-60)*(t**2-3 0*t+900))+96Ò0*q*(r-8325)*(2*q*(t**2-3 0*t+600)+ 

185* (t-60)*(t**2-30*t+900) ) ) 
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SA(3,l)=4*E*z/PL(l) 

* SA(3,1)=48*EE/((3+2*H)*(PL(1)-60)**2) 

CT(1)=SA(3,1)*PL(1)**3/(E*PI(1)) 

CRB(1)=SA(1,1)*PL(1)/(E*PI(1)) 

CRT(1)=CRB(1) 

C* END OF STIFFNESS CALCULATIONS 

RETURN 

END 

*C:: SUBROUTINE FIND SOLUTION:: OBTAINS A ZERO OF THE 

DETERMINANT 

* SUBROUTINE FINDS (N,A,X,DXO,CRI,CR2,CT,PL,Cl,C2,C3 

+,C4,ACC,MAXI,IFLAG) 

IMPLICIT DOUBLE PRECISION (A-H,P-Z) 

DIMENSION A(10,10),V(10),Β(10) 

XPAST=X 

ICOUNT =0 

DX=DX0 

X=X+DX 

CALL SETUP (A,CR1,CR2,CT,PL,X) 

CALL DET01(A,N,DET0) 

DET1 = DET0 

IF (ABS(DETl) .LE. ACC) GOTO 30 

2 0 X = X+DX 

ICOUNT = ICOUNT+1 

IF (ICOUNT .GT. MAXI ) THEN 

IFLAG=-1 

RETURN 

END IF 

CALL SETUP (A,CR1,CR2,CT,PL,X) 

CALL DET01 (A,N,DET2) 

151 FORMAT (' ' ,4X,F12.5,10X,F12.5) 

IF (ABS(DET2) .LE. ACC) GOTO 30 

IF (DET2*DET1 .LT.0) THEN 

X =X -DX 

DX =DX/2 
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GOTO 20 

ELSE 

DET1=DET2 

GOTO 20 

END IF 

Q * * * * -k -k -k * * * * -k * * * * * * * -A- * -k * * * 

C::: A SOLUTION IS FOUND 

30 IF (ABS(XPAST-X) .LT. .0001) THEN 

DET1=DET2 

DX=DX0 

GOTO 20 

ELSE 

XPAST =X 

END IF 

DO 220 , L=1,N 

B(L)=0 

22 0 CONTINUE 

CALL EGVC (A,B,N,V,JFLAG) 

C1=V(1) 

C2=V(2) 

C3=V(3) 

C4=V(4) 

IFLAG=0 

RETURN 

END 

C 

C: : END OF SUBROUTINE FINDS 

£************************************************** 

C: : SUBROUTINE EGVC FOR EIGNVECTORS' CALCULATIONS 

C: : CALCULATES THE EIGNVECTORS FOR A SYSTEM OF Ν SIMULTANUOUS 

EQUATIONS 

C:: THE PROGRAM IS VALID WHEN THE RANK OF OF THE COEFFICIENT 

C:: MATRIX IS EQUAL TO N-l 

SUBROUTINE EGVC (Α,Β,N,X,JFLAG) 

IMPLICIT DOUBLE PRECISION (A-H,P-Z) 
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DIMENSION A(10,10) , B(10) ,X(10), TM(10,10) 

LOGICAL SINGULAR 

JFLAG = 1 

SINGULAR = .TRUE. 

MN=N 

DO 15, 1=1,Ν 

IF ( ABS (Β (I)) .GT. 1E-5 ) THEN 

SINGULAR =.FALSE. 

END IF \ 

15 CONTINUE 

IF (SINGULAR) GOTO 55 

IFLAG = 0 

CALL SOLVE (A,MN,B,X,IFLAG) 

IF (IFLAG -EQ. 1) THEN 

PRINT , 'SYSTEM IS NON SINGULAR ' 

PRINT , 

WRITE (*,121) 'SOLUTION :' 

WRITE (*,121) ' ' 

PRINT , 

JFLAG = -1 

RETURN 

ELSE IF (IFLAG .EQ.-l) THEN 

PRINT , 'SYSTEM IS UNSUITABLE FOR THIS PROGRAM ' 

PRINT , 'PLEASE CHECK RESULTS INDEPENDENTLY' 

JFLAG = -2 

END IF 

C:: SYSTEM IS SINGULAR 

55 IEQ = 0 

60 IEQ = IEQ+1 

IF (IEQ .GT.N) THEN 

PRINT ,'SYSTEM HAS MORE THAN ONE DEGREE OF FREEDOM' 

JFLAG=-3 

RETURN 

END IF 

IR=0 

DO 110 ,1=1,N-l 
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7 0 I R = I R + 1 

I F ( I R -EQ. IEQ ) GOTO 7 0 

J R = 0 

DO 1 0 0 , J = 1 , N - 1 

80 J R = J R + 1 

I F ( J R . E Q . IEQ ) GOTO 80 

T M ( I , J ) = A ( I R , J R ) 

1 0 0 CONTINUE 

B ( I ) = - A ( I R , I E Q ) 

1 1 0 CONTINUE », 

CALL SOLVE ( T M , M N - 1 , B , X , I F L A G ) 

I F (IFLAG . E Q . - 1 ) GOTO 60 

DO 1 2 0 , J = N , I E Q + 1 , - 1 

X ( J ) = X ( J - 1 ) 

12 0 CONTINUE 

X ( I E Q ) = 1 

1 2 1 FORMAT ( ' ' , 2 6 X , A 1 2 ) 

RETURN 

END 

C : : : SUBROUTINE SOLVE 

C : : T H I S SUBROUTINE SOLVES (N) SIMULTANUOUS LINEAR EQUATIONS 

C : : A I S THE C O E F F I C I E N T MATRIX , N I S THE NO. OF EQUATIONS 

C : : X I S A VECTOR WHICH ON EXIT STORES THE SOLUTIONS 

C : : Β I S THE MATRIX (N X 1) HOLDING THE R . H . S . OF THE EQUATIONS 

C : : IFLAG I S AN INDICATOR . 

C : : ON EXIT , IFLAG = - 1 INDICATES A SINGULAR SYSTEM OF 

EQUAITIONS 

Q -k -k -k -k -k -k -k -k -k -k -k -k * * -k -k -k -k -k -k -k -k * * * * * * * * * * Χ * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SUBROUTINE SOLVE ( Α , Ν , Β , X , I F L A G ) 

I M P L I C I T DOUBLE P R E C I S I O N ( Α - Η , Ρ - Ζ ) 

DIMENSION A ( 1 0 , 1 0 ) , B ( 1 0 ) , S T ( 1 0 , 1 0 ) , X ( 1 0 ) 

DO 8 1 0 , 1 = 1 , Ν 

DO 8 1 0 , J = 1 , N 

S T ( I , J ) = A ( I , J ) 
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810 CONTINUE 

IFLAG=0 

CALL DET01 (A,N,DET0) 

IF (ABS(DETO) .LE. .0001) THEN 

IFLAG = -1 

RETURN 

ELSE 

IFLAG = 1 

END IF 

DO 8100, J=1,N \ 

DO 830,1=1,Ν 

A(I,J) = B(I) 

830 CONTINUE 

CALL DET01 (A,N,X(J)) 

DO 840 , 1=1,Ν 

A(I,J) = ST(I,J) 

840 CONTINUE 

810 0 CONTINUE 

C* SOLUTION COMPLETED 

DO 850, J=1,N 

X(J) =X(J)/DET0 

* WRITE (*,51) J , X(J) 

51 FORMAT (' ',20X,'X(',12,') =',2X,F10.3) 

850 CONTINUE 

RETURN 

END 

C:: SUBROUTINE DET01 (A,N,DET) 

C: : THIS SUBROUTINE CALCULATES THE VALUE OF A DETERMINANT A, OF 

C: : ORDER N. THE VALUE OF THE DETERMINANT WILL BE STORED IN THE 

C:: DOUBLE PRECISION VARIABLE "DET". ON EXIT, THE DETERMINANT 

A C : : WILL BE STORED TO ITS ORIGINAL CONTENT. 

SUBROUTINE DET01 (A,N,DET) 
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IMPLICIT DOUBLE PRECISION (A-H,P-Z) 

DIMENSION A(10,10) , B(10,10) ,T(10,10) 

DET =1. 

C IG =1 

DO 250, 1=1,Ν 

DO 250, J=1,N 

B(I,J) = A(I,J) 

2 50 CONTINUE 

C: : IG IS AN INTEGER USED TO HOLD THE SIGN OF THE DETERMINAT 

C:: THE FIRST TASK IS TO REDUCE Ö?HE DETERMINANT TO 3 X 3 SIZE 

IF (N.EQ.3) GOTO 400 

IF( Ν .EQ. 2) GOTO 50 0 

DO 380, K=l,N-3 

IG =1 

IF (ABS(A(K,K)) .LE. .0001) THEN 

ICOUNT = Κ 

270 ICOUNT = ICOUNT + 1 

IF (ICOUNT .EQ. (N+l)) THEN 

DET - 0 

GOTO 700 

C:: IN THE ACTUAL SUBROUTINE, STOP WILL BE PRECEEDED BY A 

RETURN 

ELSE 

END IF 

IF (ABS(A(K,ICOUNT)) .GE. .0001) THEN 

DO 280 , IC=K,N 

CALL SWAP (A(IC,K),A(IC,ICOUNT)) 

2 80 CONTINUE 

IG = -IG 

ELSE 

GOTO 27 0 

END IF 

END IF 

DET = A(K,K)*DET 

C END OF PHASE ONE OF'THE PROGRAM 
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DO 370 , J=K+1,N 

FACTOR = A(K,J)/A(K,K) 

DO 360 ,I=K,N 

A(I,J)=A(I,J) - FACTOR * A(I,K) 

3 60 CONTINUE 

37 0 CONTINUE 

3 80 CONTINUE 

C:: DETERMINANT IS REDUCED TO 3 X3 

400 CONTINUE 

ICI = 0 

DO 320, I=N-2,N 

ICI=ICI+1 

ICJ = 0 

DO 320 ,J=N-2,N 

ICJ=ICJ+1 

T(ICI,ICJ) =A(I,J) 

32 0 CONTINUE 

301 FORMAT ( 3(F10.4),2X) 

Ρ = T(1,1)*T(2,2)*T(3,3)+T(1,2)*T(2,3)*T(3,1)+ 

1 T(l,3)*T(2,1)*T(3,2) 

Q = T(3,1)*T(2,2)*T(1,3)+T(3,2)*T(2,3)*T(1,1)+ 

1 T(3,3)*T(2,1)*T(1,2) 

DET = DET*IG*(P-Q) 

GOTO 7 00 

C:: DETERMINANT IS 2 X 2 

500 CONTINUE 

DET = A(1,1)*A(2,2)-A(1,2)*A(2,1) 

* WRITE (*,501) DET 

501 FORMAT ('0',/,/,26X,'DETERMINANT = ',F12.4) 

GOTO 700 

700 DO 750,1=1,Ν 

DO 750,J=1,N 

A(I,J) = B(I,J) 
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7 50 CONTINUE 

RETURN 

END 

*********************************************** 

C** SUBROUTINE SWAP (INTERCHANGE TWO VALUES) 

*********************************************** 

SUBROUTINE SWAP (X,Y) 

DOUBLE PRECISION Χ,Υ,Ζ 

Z=X 

X=Y \ 

Y=Z 

RETURN 

END 

C:: SUBROUTINE SWAPI(X,Y): SWAP INTEGER VALUES 

SUBROUTINE SWAPI (X,Y) 

INTEGER Χ,Υ,Ζ 

Z=X 

X=Y 

Y=Z 

RETURN 

END 

C: : SUBROUTINE SETUP : SETS UP THE DETERMINANT 

************************************************ 

SUBROUTINE SETUP (A,CRI,CR2,CT,PL,X) 

IMPLICIT DOUBLE PRECISION (A-H,P-Z) 

DIMENSION A(10,10) 

IF (ABS(X).LE. .0001) THEN 

RETURN 

END IF 

A(l,l)=l 

A(l,2)=0 

A(1,3)=1-CT/X**2 

A(1,4)=-CR2/X**2*PL 

A(2,l)=COS(X) 
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A(2,2)=SIN(X) 

A(2,3)=0 

A(2,4)=-CR2*PL/X**2 

A(3,l)=0 

A(3,2)=X 

A(3,3)=CT/X**2 -X**2/CRl +CT/CR1 

A(3,4)=CR2*PL/CR1 

A(4,1)=-X*SIN(X) 

A(4,2)=X*COS(X) 

A(4,3)=CT/X**2 \ 

A(4,4)=-1*PL 

RETURN 

END 
Q******************************** 

C::: THE CHARACTERISTIC FUNCION 

FUNCTION U (MODE,P,X,C,CCK,CC2,PL,PI) 

IMPLICIT DOUBLE PRECISION (A-H,P-Z) 

DIMENSION C (50,4) 

SK = SQRT (P/(PI*195.) ) 

W = C(MODE ,l)*COS (SK*X) + C(MODE,2)*SIN(SK*X) 

W = W + CCK*C(MODE,3) /P*X 

W = W + C (MODE, 3) * (1-CCK*PL/P) 

U = W - CC2*C(MODE,4)/P 

RETURN 

END 

C*************************** 

C: : FUNCTION MOMENT 
£**************************** 

FUNCTION ALPHA (MODE,P,PI,X,C,SMAX) 

IMPLICIT DOUBLE PRECISION (A-H,P-Z) 

DIMENSION C(50,4) 

SK=SQRT(P/(195.*PI)) 

ALPHA= 1/SMAX *(C(MODE,1)*COS(SK*X) 

1 +C(MODE,2)*SIN(SK*X)) 

RETURN 

END 



Appendix G Listing of Program 415 

e 

C* END OF FUNCTIONS 

Q* ************************************************ * 

C* FUNCTION SMFY (Ρ,Α,Ζ,ΡΥ) 

C* CALCULATES MOMENT CAPACITY IN THE PRESENCE 

C* OF AXIAL LOAD (FIRST YIELD) 

Γ> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * f *************** * 

FUNCTION SMFY (Ρ,Α,Ζ,ΡΥ) 

IMPLICIT DOUBLE PRECISION (A-H,P-Z) 

SMFY =(PY-P/A) *Z '' 

RETURN 

END 

C* FUNCTION SMP (Ρ,Α,Ζ,ΡΥ) 

C:: PLASTIC MOMENT CAPACITY IN THE PRESENCE of AXIAL LOAD 

Ç> ******************************************************* * 

FUNCTION SMP (Ρ,Α,Ζ,ΡΥ) 

IMPLICIT DOUBLE PRECISION (A-H,P-Z) 

SMP= 1.5*PY*Z*(1-P**2/((PY*A)**2)) 

RETURN 

END 
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Appendix H 

Further Considerations of Existing Design Practice 

H.l Introductory Remarks 
ï, 

In designing multi-stored frames the normal design process encourages a 

situation in which all components are at the design load detailed so as to produce 

a simultaneity of collapse; or more commonly so as to present consistent factors of 

safety against collapse. Where a given member has the possibility of more than one 

buckling mode, this procedure would correspond to that in which the resistance to 

buckling in the various modes are equalised. For example, in a column exhibiting 

the possibility of buckling about the major, x, and minor, y, axes, it would be 

normal to choose a cross section for which the buckling resistances about the two 

Pc elastic critical 

Pb elastic plastic 
non-interactive 

Rj elastic plastic 
' interactive 

•effx 

•6Hy lyy 

Figure H-l 

axes are as near as possible equal to each other. Too high a stiffness about the major 

axis / / > lleff jleff \2 will mean collapse is precipitated by buckling about the 
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minor axis. Clearly, in this situation a redistribution of material on the cross-section 

to increase the stiffness about the minor axis, and consequently decrease the stiffness 

about the major axis, will allow an increased load carrying capacity. And similar 

reasoning would apply to the situation were major axis buckling precipitates collapse 

Ixx/I < [hff Ihw Ϋ • Clearly, the maximum load carrying capacity would occur 

when the buckling capacities are equalised abdut the two axes. This is discussed in 

Fig. H-l and was alluded to in Fig. 5-7. More commonly, this optimisation would 

be framed as a minimisation of the material required for a given design load 

capacity. 

critical buckling 
sway 

critical buckling 
non - sway 

Χ* mid 

Figure H-2 

A similar situation arises when a given column has in the same plane the 

potential for buckling into a sway mode and a non-sway mode. In this case we could 

think of the optimisation in terms of the distribution of material and stiffness along 

the axis of the column. A column with high stiffness and strength at its ends will 

offer high resistance to sway but low resistance to non-sway buckling. An 

improvement in load carrying capacity would result if material is moved towards the 

middle of the column. However, if too much redistribution of material was 

introduced it would be the sway mode, depending as it does on the weakened ends 

of the column, which precipitates collapse. An optimum design, and the one that our 
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usual design process would encourage, would be that for which the two resistances 

were equalised. These arguments are as true for a purely elastic buckling as they 

would be when elastic-plastic interactions are considered. And yet, our design 

practice is remarkable in its lack of clear advise on how to handle the inevitably 

greater interactions occurring when a simultaneous, 'optimum', buckling condition 

is achieved. It is this paucity of explicit design guidance that provided the 

motivation for the present thesis dealing with interactive elastic plastic buckling of 

sway and non-sway modes in columns, and an earlier study examining the related 

situation in biaxially buckling columns59. ^ 

To highlight the inadequacy of existing design practice, the following presents 

comparisons of the theory developed in this thesis with the predictions arising from 

BS 5950. 

H.2 Selection of frame geometry 

Because it is likely to involve the most significant effects from modal 

interactions, a frame geometry is chosen for which the first two critical loads are 

close to each other. This will enable results from the simplified procedure of Eq. 

(8.22) to be also compared. Fig. H-3 shows the chosen geometry; this corresponds 

to that used for the experiment 4oc (see Table 7_5). 

The theoretical and experimental results for experiment 4oc are in Appendix 

E. For convenience the most important results for experiment 4oc are as outlined 

follows: 

a) Theoretical results 

The first two critical loads were Ρ s - PcN = 6.75 kN. 

For the total imperfections found experimentally through the Southwell Plot 

and shown below, the theoretically predicted failure loads were respectively: 

- for the first yield initiation P, = 5.51 kN, whilst 
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Figure H-3 

- for the full plasticity (first hinge) P„ = 6.06 kN. 

The squash load was estimated to be Ρ = 22.477 kN. 

b) Experimental results 

From the Southwell Plot the sway critical load was found to be PcS = 6.73 kN, and 

the non-sway critical load PcN - 6.72 kN. 

The sway imperfection was found to be ξ5 = 0.86 mm, and the non-sway 

imperfection ξΝ = 0.74 mm. With these imperfections a maximum load of 6.4 kN 

was later recorded for this frame geometry. 
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H.3 Linear Analysis 

To allow the procedure outlined in BS 595030 to be followed, two bending 

b2= b3= 6 mm b 1 = 5 mm 

Pv - 166 Ν 

w„- 0 74 mm 

Pv = 166 Ν 

314 mm 314 mm 
W//Mi. 

Figure H-4 

w=086 mm 

b2= b3 = 6mm Ή l·- bi " 5 m m 

Ρ - 15 Ν 
nor 

314 mm 314 mm 

Figure H-5 

moment diagrams of the frame have been drawn for the following loading cases: 

a) vertical loading, on the top left and bottom right beam (at middle), shown 

in Fig. H-4 are the loads used in the experiment. These loads produce the column 
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deformation symmetric about its mid horizontal axis and are responsible for the non-

sway imperfections on the central column. 

b) horizontal loading, on the top right end of the frame, shown in Fig. H-5, 

necessary to cause antisymmetric deformation (symmetry about the column's mid 

point), responsible for the sway imperfections on the column. 

In both cases the load levels were speóially chosen to provide the total 

imperfections obtained separately for each mode through the Southwell Plot, which 

in turn were later used for the theoretical predictions of P, and Pm. 

Figs. H-6 and H-7 show the B.M.D. of the whole frame resulting from linear 

analyses, where the moments corresponding to the central column are shown shaded. 

H.4 BS 595030 Procedure 

Following a consultation with a member of the Ove Arup & Partners 

company, specialised on the way BS 5950 treats the buckling behaviour of beam-

columns, it was confirmed that BS 5950 provides two different empirical approaches 
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0.49 

0.49 

B. M. D. (kN-mm) for horizontal load 15 Ν 

Figure H-7 

for calculating the buckling strength resistance. In these approaches: 

a) the effect of imperfections (sway and non-sway) are explicitly taken into 

account by considering the linear bending moments at the ends of the column and 

b) the beam-column is treated as a strut, where the effect of imperfections 

have been implicitly taken into account (limited frame method). 

Approach (a) 

An approximate method for calculating the elastic critical loads for multi­

storey plane frames, presented by Home38 in 1975, provides the background for a 

practical method for calculating sway effects in BS 5950. By introducing notional 

horizontal forces at each floor, equal to 0.5 % of the factored applied vertical load, 

allows calculation of the sway index, φ , (Ref30, Appendix F, Eq. F.2.4), as 

Φ , -
h 

(H.1) 
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where: h is the storey height 

δ υ is the horizontal deflection of the top of the storey 

bL is the horizontal deflection on the bottom of the storey. 

Then the elastic critical load factor, Xcr, (Eq. F.2.3 of Ref30), is defined as 

x = - L . 
200 <b 

(H.2) 

through which the amplification factor, η , for the moments due to horizontal (sway) 

loading (see section 5.6.3 Ref30) may be calculated from 

η 
λ - ι 

er 

(H.3) 

1.25 

1 25 0.97χ η 

Ο 97 χ η 1.25 + 0.97χ η 

1 25 - 0.97χ η 

Figure Η-8 

The amplified maximum combined linear bending moment can therefore be 

obtained, as shown in Fig. H-8. Using Table 18 of Ref30 the value of β, representing 

the ratio of the smaller to the larger end moment, can then be obtained, through 

which, the equivalent uniform moment factor, m, from the same Table is derived. 

The simplified approach (section 4.8.3.3.1 Ref30), provides a design load 

governed by the equation 
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r = 1 ί , (H.4) 
Ρ Mn 

c ρ 

whilst the more exact approach (section 4.8.3.3.2 Ref), upon rearrangement gives 

(H.5) F 
pc 

mM 
1 

Ma' 

0.5mM 
1 + 

He. 

where: F is the design load 

Pc is the compressive strength force given from the table 27c 

m is the equivalent uniform moment factor 

Mx is the amplified maximum combined linear bending moment 

Mcx is the moment capacity in the absence of axial load (=M ) 

The design load is evidently dictated by the satisfaction of equation (H.5), 

providing the smaller values for F. 

The plastic moment capacity for the given column geometry is 

Mp = Zp-ay = 81.45-0.36 = 29.32 kN-mm (H.6) 

and, for Le = 1.0L (section 5.6.3 Ref30), giving slenderness ratio 

340 

λ = ^ = 239 , (H.7) 
/ 1 2 5 J 7 6 2 ^ 4 

the compressive strength is, according to Table 27b, given by 

Pc = 0.032x62.44 = 2.0 kN (H.8) 

Therefore, application of Equation (H.5) will give for F a design load which has to 

be the same as that initially assumed in calculating the notional horizontal loading. 
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It is clear that this approach requires the design load to be obtained through 

an iterative calculation procedure. For this reason a program has been written in 

fortran to provide the design load. The program initially calculates the compressive 

strength (which otherwise was provided by Table 27b). Then it assumes a random 

factored vertical load, and, following the procedure outlined before, calculates the 

design load, which is then compared to the factored vertical load initially obtained; 

if it is not the same, the program, takes the revised value of the design load as a 

factored and repeats the process until the design load is equal to the factored. 

A run of the above program gave the following output 

BS 5950 Part 1: 1990 

For slenderness = 239, the compr. strength is 0.032 kN/mm2 

RESULTS OBTAINED FROM BS 5950 THROUGH ITERATIVE PROCEDURE 

Loop φ5 Xcr η Mmax Mmin β m D_strs D_load 

1 0.0008 5.9302 1.203 2.417 0.083 0.034 0.581 0.0302 1.886 

2 0.0016 3.1443 1.466 2.672 -0.172 -.065 0.549 0.0301 1.880 

3 0.0016 3.1545 1.464 2.670 -0.170 -.064 0.549 0.0301 1.880 

4 0.0016 3.1545 1.464 2.670 -0.170 -.064 0.549 0.0301 1.880 

The design Load according to the codes is 1.880 kN. 

Approach (b) 

Following the procedure outlined in the limited frame method of Ref30, the 

frame horizontal stiffness, S , obtained through the linear analysis (Section H.3), is 

S„ = - ^ - - 17.44 N/mm (H.9) 
p 0.86 

The sum of the stiffnesses I/L of the columns of the frame, ^2 Kc, is 
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Y^Kc = (2x209+125,7)/340 = 1.60 mm3 (Η·10) 

Therefore the relative stiffness, k3, of the effective bracing, (Ref30, E.3.2) is 

k3 - * ' * ' = 340» χ 17.44 = 0.081 (H.11) 
%0ΕΣΚε 80x195000x1.6 

Since the relative stiffness is less than 2, the frame has to be considered as 

a sway one, where the beams are bent in double curvature, and the relevant beam 

stiffnesses, Kb, should be taken as 1.5 χ IfL (Ref30, E.4.1). These stiffnesses for the 

beams are Kb = 1.5x209/314 =1.0, and for the column Kc = 125.7/340 = 0.37. 

The joint restraint coefficients, kx and k2, from (Ref30, E.2.1), are 

L = L = c- = ~ — = 0.16 (H.12) 
Κα+ΈΚο ° · 3 7 + 2 · 1 0 

Since the value of these coefficients is between zero and 1, the effective 

length ratio, LE/L must be derived through interpolation between the graphs of Figs. 

24 and 25 of Ref30. Following this interpolation, the effective length ratio is 

LE/L - 1.09, providing thus an effective length LE = 1.09x340 = 371 mm. 

The slenderness ratio, λ, for the column is consequently 

x = hi = — 3 7 j — = 2 6 1 ^ ( H 1 3 ) 
r

y VT25J/6244 

which, upon use of the Table 27b of Ref30 for yield stress 360 N/mm2, provides a 

compressive strength for this column pc = 28 MPa. 

The design load for this column is therefore 
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Pc = 0.028x62.44 = 1.75 kN (H.14) 

It would appear that for this model frame the design limit for axial load 

coming from both approaches of BS 5950, of 1.892 or 1.75 kN has an additional 

safety factor of 2.9 or 3.15 compared with the lower bound theoretical prediction, 

and 3.37 or 3.65 compared with the experimental buckling load. This suggests an 

extreme level of conservatism. 

H.5 Further Comparisons 

For a wide range of different frame geometries and loading conditions, Ρ, 

has been shown to be a good lower bound estimate of the experimental collapse 

loads. In these comparisons, which have been made in the second experimental 

series (Tables 7_7 and 7_8), three different and independent experiments (elastic, 

elastic-plastic and collapse) were undertaken for each frame geometry (covering the 

cases of PcS/PcN being less, equal or greater than unity). It was found that in most 

of the cases P, was a close lower bound of the experimental collapse load. 

Following the procedure outlined in section H.4 as to how the code treats the 

buckling strength of beam-columns under conditions of combined sway and non-

sway, a second program has been written in Fortran to provide the design load in 

the cases where the horizontal loading, Phor, (necessary for the sway imperfections) 

is kept constant, while the vertical loading, Pv, is gradually increased; then a third 

similar program was written for the case when Pv is kept constant while Phor is 

increased. The results of these parametric studies, depicted in Figs. H-9 and H-10, 

show clearly that the code is excessively conservative. In particular Fig H-9 shows 

the vertical buckling load obtained experimentally for the level of imperfections 

addressed in Section H.2, and compares this with the first yield and first hinge loads 

obtained theoretically for the same level of sway imperfections but different levels 

of vertical loadings (non-sway imperfections). In the same Figure the design loads 
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obtained through Ref30 are depicted for both approaches. 

Fig. H-10 shows the same comparisons except that the level of vertical 

loading (non-sway imperfections) is kept constant and the buckling strengths are 

compared for different levels of sway imperfections. 

Design strength for horizontal load Ρ = 15 Ν 
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Figure Η-9 

Η.6 Comments and Discussion 

The results found from BS 5950 to represent the design loads for the central 

column of the experimental frame, seem to be unrelated to those obtained from the 

first yield loads, predicted by the developed theory. Where experimental loads are 

available, BS 5950 results in failure loads that compare poorly with those observed 

experimentally. This might be partially attributed to the nature of the idealised 

frame, in particular to the end blocks, used in the tests to hold the beams and 

columns together. This results in increased total stiffness of the frame, and hence 

increased column failure loads. However, the major cause for the discrepancies 
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Design strength for vertical loading Ρ = 166 Ν 
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Figure H-10 

seems to lie the basically inadequate procedure in the BS 5950 for taking account 

of combined sway and non-sway modes in rigid jointed frames. Although the present 

examples have been chosen so as to highlight the inadequacies it would appear that 

there exist deficiencies in the treatment of sway frames. These deficiencies may be 

attributed to an inadequate consideration (overly conservative in character) of the 

effects of the non-linearities arising from each mode and more specifically for the 

interaction developed between these modes. It would seem that a more rational 

treatment of sway buckling and its interaction with non-sway buckling, will require 

moment amplification factors that more truly reflect the levels of the critical loads 

and the amplitudes of the imperfections in both the sway and the non-sway buckling 

modes. 

From the above discussion it has been observed that the code procedure does 

not appear to reflect the behaviour in the experimental observations linked with this 

project. In this respect the code provisions do not conform to the usual approach in 

choosing code curves to provide lower bounds to experimental scatter. 
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