
   

 



 
ii 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is dedicated 
 

To my family 
 

and those who patiently work for a better world  



 
iii 

 

 

 

Foreword 
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Resistant Structures. 

The text is mainly referred to my lecture courses, based on the indicative 
content and the learning strategies applied by the Kingston University in co-
operation with the TEI of Piraeus, for this module. 

A lot of effort has been disbursed to cover fundamental demands of 
knowledge in a simple and easily understood way, since the content of this sector is 
really huge. 

Wherever possible, simple illustrations or examples have been used to clarify 
the text.  

Reproduction of detailed working drawings has been avoided, since these are 
often confusing to the student until the fundamentals of the subject are fully 
understood. 

In the hope that a large part of my targets has been realised, I hand over this 
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Introduction 
 

The earthquake has begun to become a problem for humans since they started 

building. This is because a structural system is designed basically for gravity loads 

and not for the horizontal inertial loads that are generated during an earthquake. 

Indeed, the seismic actions on a structure are not a result of externally applied loads. 

They are mainly derived from distortions due to the ground motions caused by the 

earthquake. Consequently they are different from wind or gravity loads, which are 

applied on the structure externally.  

Although catastrophic earthquakes take usually place to certain geographical 
areas, the so called ‘seismic zones’, the damage they cause in densely populated 
areas and the number of deaths, give rise to a world-wide interest. 

Because of the deaths and the damage to buildings, the earthquakes have 
several economic, psychological, social and even political effects. This is the reason 
that many scientists, such as seismologists, engineers, psychologists, economists and 
so on deal with this problem. All these scientific branches are eventually directed to 
a unique target: the effort of creating earthquake-resistant structures. 

The behavior of a structure during an earthquake depends on two basic parameters: 

(a) the intensity of the earthquake and (b) the quality of the structure. 

The quality of the structure is a parameter with sufficient level of reliability since it 

depends on the structural system, the design procedure and careful construction. 

However, the intensity of the earthquake is a parameter with very high uncertainty. 

In fact, the intensity of the earthquake at a certain point is a function of several 

factors, such as the epicentral distance, the focal depth, the magnitude of the 

earthquake on the Richter scale, the geological formations between the epicenter 

and the reference point, the local soil conditions and so on. The term ‘intensity’ 

expresses the seismic hazard, and, on the relevant response spectra, reflects to a 

degree, the maximum ground displacements, velocities and accelerations. 

For every geographical area, the ideal solution for estimating the seismic hazard 

would have been the existence of response spectra, based on long-term 

observations of seismic action. However, due to the lack of such material, the 

estimation is usually based on two, not particularly reliable, methods: 

1. Estimation of the expected maximum acceleration with a specific probability 

of occurrence for a certain return period and 
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2. Estimation of the expected intensity, measured on the behavior of structures 

to the earthquake, or, to a certain degree, on scales, such as the Modified 

Mercalli (MM) scale. 

The seismic design philosophy can generally be summarized in the following 

requirements: 

• Serviceability limit state: Structures must resist low-intensity earthquakes 

without any structural damage. This means that during small and frequent 

earthquakes all structural components should remain in their elastic range. 

• Ultimate limit state: Structures should withstand earthquakes of medium 

intensity, with a very light and repairable damage in their structural 

elements. This intensity (earthquake design) has a peak acceleration, with 

90% probability of not being exceeded in 50 years. 

• Collapse limit state: Structures should withstand earthquakes of high-

intensity, with a return period much longer than their design life without 

collapsing. 

The application of the above criteria implies that the maximum seismic intensity 

along with its return period must be taken into account when designing a structure. 

Furthermore, it denotes that the elastic limit of the structure is allowed to be 

exceeded during earthquakes of medium or high intensity. This means that the 

structure should be able to undergo high elastic deformations without losing a large 

percentage of its strength. 

Eventually the problem of seismic behavior of structures is primarily an energy-

related one. In order for a structure to avoid collapse, it should be in position to 

absorb and dissipate the kinetic energy imparted in it during the seismic excitation. 

The understanding of this simple energy – balance – principle, is the key for 
the development of modern earthquake resistant design. 
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Basic Principals on Engineering Seismology 

What Is Seismology 

Seismology is the study of earthquakes and seismic waves that move through 

and around the earth. A seismologist is a scientist who studies earthquakes and 

seismic waves. 

What Are Seismic Waves 

Seismic waves are the waves of energy caused by the sudden breaking of rock 

within the earth or an explosion. They are the energy that travels through the 

earth and is recorded on seismographs. 

Types of Seismic Waves 

There are several different kinds of seismic waves, and they all move in different 

ways. The two main types of waves are body waves and surface waves. Body waves 

can travel through the earth's inner layers, but surface waves can only move along 

the surface of the planet like ripples on water. Earthquakes radiate seismic energy as 

both body and surface waves. 

 Body - Waves 

Traveling through the interior of the earth, body waves arrive before the surface 

waves emitted by an earthquake. These waves are of a higher frequency than 

surface waves. 

  P - Waves 

The first kind of body wave is the P wave or Primary wave. This is the fastest kind of 

seismic wave, and, consequently, the first to 'arrive' at a seismic station. The P wave 

can move through solid rock and fluids, like water or the liquid layers of the earth. It 

pushes and pulls the rock it moves through just like sound waves push and pull the 

air.  

Have you ever heard a big clap of thunder and the windows rattle at the same time? 

The windows rattle because the sound waves were pushing and pulling on the 

window glass much like P waves push and pull on rock.  

Sometimes animals can hear the P waves of an earthquake. Dogs, for instance, 

commonly begin barking hysterically just before an earthquake 'hits' (or more 

specifically, before the surface waves arrive). Usually people can only feel the bump 

and rattle of these waves. 
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P waves are also known as compressional waves, because of the pushing and pulling 

they do.  

Subjected to a P wave, particles move in the same direction that the wave is moving 

in, which is the direction that the energy is traveling in, and is sometimes called the 

'direction of wave propagation' 

 

P waves travel through a medium by means of compression and dilation. 

 

  S - Waves 

The second type of body wave is the S wave or Secondary wave, which is the 

second wave you feel in an earthquake. An S wave is slower than a P wave and 

can only move through solid rock, not through any liquid medium.  
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It is this property of S waves that led seismologists to conclude that the Earth's 

outer core is a liquid.  

S waves move rock particles up and down, or side-to-side perpendicular to the 

direction that the wave is traveling in (the direction of wave propagation).  

 

 
 

An S – wave travels through a medium 

  

 Surface Waves 

Travelling only through the crust, surface waves are of a lower frequency than body 

waves, and are easily distinguished on a seismogram as a result.  

Though they arrive after body waves, it is surface waves that are almost entirely 

responsible for the damage and destruction associated with earthquakes. This 

damage and the strength of the surface waves are reduced in deeper earthquakes. 
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Surface waves are divided in Love waves and Rayleigh waves. 

  Love Waves 

The first kind of surface wave is called a Love wave, named after A.E.H. Love, a 

British mathematician who worked out the mathematical model for this kind of wave 

in 1911. It's the fastest surface wave and moves the ground from side-to-side. 

Confined to the surface of the crust, Love waves produce entirely horizontal motion. 

 

A Love wave travels through a medium 

 

  Rayleigh Waves 

The other kind of surface wave is the Rayleigh wave, named for John William Strutt, 

Lord Rayleigh, who mathematically predicted the existence of this kind of wave in 
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1885. A Rayleigh wave rolls along the ground just like a wave rolls across a lake or an 

ocean. Because it rolls, it moves the ground up and down, and side-to-side in the 

same direction that the wave is moving. Most of the shaking felt from an earthquake 

is due to the Rayleigh wave, which can be much larger than the other waves. 

 
 

Rayleigh waves travel through a medium 

  

Making P and S Waves 

You can imitate the motion of P and S waves using a Slinky (the metal ones work 

best). The S wave can also be simulated using a piece of rope in place of a Slinky. 

These activities work best with a partner and on a flat surface such as a table or the 

floor. 
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  Making P Waves 

P waves consist of a compessional (shortening) motion and a dilational (expanding) 

motion that both lie along a line. As you make your own P wave in this exercise, try 

to identify the compressions and dilations in the Slinky. Here's how you do it:  

1. Place the Slinky on a flat surface. Have your partner hold the opposite end of 

the Slinky. If you don't have a partner, you can tie the Slinky onto a hook in the 

wall or onto a door knob (close the door first) and try this activity in the air.  

2. Holding the other end of the Slinky, walk away from your partner, or from the 

wall or door.  

3. Stop walking away when the Slinky isn't sagging anymore (if in the air) or there 

is no more slack. Don't pull the Slinky too tight; just take up the slack.  

4. Push your end of the Slinky towards your partner in one, quick motion (if the 

Slinky is suspended in the air, quickly jerk your end of the Slinky towards the 

wall and then back). Don't let go off the Slinky. 

You'll see waves similar to P waves moving back and forth along the Slinky as below: 
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  Making S Waves 

When making your S wave, notice how the Slinky itself moves in a direction 

perpendicular to the direction that the energy is traveling in (perpendicular to the 

direction of wave propagation). S waves are more complex than P waves, but they 

should be easier to simulate in this activity: 

 

1. Place the Slinky on a flat surface, and have your partner hold the opposite end of 

the Slinky. If working alone, tie one end of the Slinky to a hook on the wall or a 

door knob (close the door first).  

2. Holding the other end of the Slinky, walk away from your partner, or from the 

wall or door. 

3. Stop walking when the Slinky has only some slack left. If working alone and the 

Slinky is suspended in the air, you want to stop walking only when the Slinky no 

longer sags in the air. Don't pull the Slinky tight; just take up most of the slack.  
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4. Quickly jerk your end of the Slinky from side to side once. If the Slinky is 

suspended in the air, a quick jerk up and down once is sufficient. Don't let go of 

the Slinky. 

You'll see waves similar to S waves moving along the Slinky like in the preceding 

picture: 

 

Where Do Earthquakes Happen? 

Earthquakes occur all the time all over the world, both along plate edges and along 

faults. 

 Along Plate Edges 

Most earthquakes occur along the edge of the oceanic and continental plates. The 

earth's crust (the outer layer of the planet) is made up of several pieces, called 

plates.  

 

An image of the world's plates and their boundaries. Notice that many plate 
boundaries do not coincide with coastlines. 

The plates under the oceans are called oceanic plates and the rest are continental 

plates. They are moving around by the motion of a deeper part of the earth (the 

mantle) that lies underneath the crust.  



 - 11 - 

 

 

These plates are always bumping into each other, pulling away from each other, or 

past each other. The plates usually move at about the same speed that your 

fingernails grow.  

Earthquakes usually occur where two plates are running into each other or sliding 

past each other. 

 Along Faults 

Earthquakes can also occur far from the edges of plates, along faults. Faults are 

cracks in the earth where sections of a plate (or two plates) are moving in different 

directions.  

Faults are caused by all that bumping and sliding the plates do. They are more 

common near the edges of the plates. 

Types of Faults 

Normal faults are the cracks where one block of rock is sliding downward and away 

from another block of rock.  

These faults usually occur in areas where a plate is very slowly splitting apart or 

where two plates are pulling away from each other. A normal fault is defined by the 

hanging wall moving down relative to the footwall, which is moving up. 

 
 

A normal fault. Tthe 'footwall' is on the 'upthrown' side of the fault, moving upwards. 

The 'hanging wall' is on the 'downthrown' side of the fault, moving downwards. 

Reverse faults are cracks formed where one plate is pushing into another plate. They 

also occur where a plate is folding up because it's being compressed by another plate 

pushing against it. At these faults, one block of rock is sliding underneath another 

block or one block is being pushed up over the other.  

A reverse fault is defined by the hanging wall moving up relative to the footwall, 

which is moving down. 
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A reverse fault. This time, the 'footwall' is on the 'downthrown' side of the fault, 

moving downwards, and the 'hanging wall' is on the 'upthrown' side of the fault, 

moving upwards. When the hanging wall is on the upthrown side, it 'hangs' over the 

footwall. 

Strike-slip faults are the cracks between two plates that are sliding past each other 

horizontally. This type of fault is caused by shearing forces and can cause powerful 

earthquakes. 

      

 

Two strike-slip faults. 

Left, a left-lateral strike-slip fault. No matter which side of the fault you are 
on, the other side is moving to the left. 

Right, a right-lateral strike-slip fault. No matter which side of the fault you 
are on, the other side is moving to the right. 

Oblique-slip faults are a combination of normal and strike-slip faulting, i.e. a mixing 

of shearing and tensional or compressional forces. 
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Why Earthquakes Happen 

Earthquakes are usually caused when rock underground suddenly breaks along a 

fault. This sudden release of energy causes the seismic waves that make the ground 

shake.  

When two blocks of rock or two plates are rubbing against each other, they stick a 

little. They don't just slide smoothly; the rocks catch on each other. The rocks are still 

pushing against each other, but not moving. After a while, the rocks break because 

of all the pressure that's built up. 

When the rocks break, the earthquake occurs. During the earthquake and afterward, 

the plates or blocks of rock start moving, and they continue to move until they get 

stuck again. The spot underground where the rock breaks is called the focus of the 

earthquake. The place right above the focus (on top of the ground) is called the 

epicenter of the earthquake. 

Try this little experiment: 

 

1. Break a block of foam rubber in half.  

2. Put the pieces on a smooth table.  

3. Put the rough edges of the foam rubber pieces together.  

4. While pushing the two pieces together lightly, push one piece away from you 

along the table top while pulling the other piece toward you. See how they 

stick?  

5. Keep pushing and pulling smoothly. 
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Soon a little bit of foam rubber along the crack (the fault) will break and the two 

pieces will suddenly slip past each other. That sudden breaking of the foam rubber is 

the earthquake. That's just what happens along a strike-slip fault. 

How Are Earthquakes Studied 

Seismologists study earthquakes by going out and looking at the damage caused by 

the earthquakes and by using seismographs. A seismograph is an instrument that 

records the shaking of the earth's surface caused by seismic waves. The term 

seismometer is also used to refer to the same device, and the two terms are often 

used interchangeably. 

 The First Seismograph 

The first seismograph was invented in 132 A.D. by the Chinese astronomer and 

mathematician Chang Heng. He called it an "earthquake weathercock." 

Each of the eight dragons had a bronze ball in its mouth. Whenever there was even a 

slight earth tremor, a mechanism inside the seismograph would open the mouth of 

one dragon. The bronze ball would fall into the open mouth of one of the toads, 

making enough noise to alert someone that an earthquake had just happened. 

Imperial watchman could tell which direction the earthquake came from by seeing 

which dragon's mouth was empty. 

 

A large-scale model of Cheng Heng's original earthquake weathercock. 

In 136 A.D. a Chinese scientist named Choke updated this meter and called it a 

"seismoscope." Columns of a viscous liquid were used in place of metal balls. The 

height to which the liquid was washed up the side of the vessel indicated the 
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intensity and a line joining the points of maximum motion also denoted the direction 

of the tremor. 

 Modern Seismographs 

Most seismographs today are electronic, but a basic seismograph is made of a drum 

with paper on it, a bar or spring with a hinge at one or both ends, a weight, and a 

pen. The one end of the bar or spring is bolted to a pole or metal box that is bolted 

to the ground. The weight is put on the other end of the bar and the pen is stuck to 

the weight. The drum with paper on it presses against the pen and turns constantly. 

When there is an earthquake, everything in the seismograph moves except the 

weight with the pen on it. As the drum and paper shake next to the pen, the pen 

makes squiggly lines on the paper, creating a record of the earthquake. This record 

made by the seismograph is called a seismogram. 

By studying the seismogram, the seismologist can tell how far away the earthquake 

was and how strong it was. This record doesn't tell the seismologist exactly where 

the epicenter was, just that the earthquake happened so many miles or kilometers 

away from that seismograph. To find the exact epicenter, you need to know what at 

least two other seismographs in other parts of the country or world recorded. We'll 

get to that soon. First, let us learn how to read a seismogram. 

 

Two illustrations of a modern seismograph in action (from Lutgens&Tarbuck, 1989) 
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How to Read a Seismogram 

When you look at a seismogram, there will be wiggly lines all across it. These are all 

the seismic waves that the seismograph has recorded. Most of these waves were so 

small that nobody felt them.  

These tiny microseisms can be caused by heavy traffic near the seismograph, waves 

hitting a beach, the wind, and any number of other ordinary things that cause some 

shaking of the seismograph.  

There may also be some little dots or marks evenly spaced along the paper.  

These are marks for every minute that the drum of the seismograph has been 

turning. How far apart these minute marks are, will depend on what kind of 

seismograph you have. 

 
A typical seismogram 

So which wiggles are the earthquake?  

The P wave will be the first wiggle that is bigger than the rest of the little ones (the 

microseisms). Because P waves are the fastest seismic waves, they will usually be the 

first ones that your seismograph records. 

The next set of seismic waves on your seismogram will be the S waves. These are 

usually bigger than the P waves. 

If there aren't any S waves marked on your seismogram, it probably means the 

earthquake happened on the other side of the planet. S waves can't travel through 

the liquid layers of the earth so these waves never made it to your seismograph. 

The surface waves (Love and Rayleigh waves) are the other, often larger, waves 

marked on the seismogram. They have a lower frequency, which means that waves 

(the lines; the ups-and-downs) are more spread out.  

Surface waves travel a little slower than S waves (which, in turn, are slower than P 

waves) so they tend to arrive at the seismograph just after the S waves.  
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A cross-section of the earth, with earthquake wave paths defined and their shadow-
zones highlighted. 

For shallow earthquakes (earthquakes with a focus near the surface of the earth), 

the surface waves may be the largest waves recorded by the seismograph. Often 

they are the only waves recorded a long distance from medium-sized earthquakes. 

How to Locate an Earthquake's Epicenter 

To figure out just where that earthquake happened, you need to look at your 

seismogram and you need to know what at least two other seismographs recorded 

for the same earthquake.  

You will also need a map of the world, a ruler, a pencil, and a compass for drawing 

circles on the map. 

Here's an example of a seismogram: 

 
 

Our typical seismogram from before, this time marked for this exercise (from Bolt, 
1978). 
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One minute intervals are marked by the small lines printed just above the squiggles 

made by the seismic waves (the time may be marked differently on some 

seismographs).  

The distance between the beginning of the first P wave and the first S wave tells you 

how many seconds the waves are apart.  

This number will be used to tell you how far your seismograph is from the epicenter 

of the earthquake. 

Finding the Distance to the Epicenter and the earthquake's 
Magnitude 

1. Measure the distance between the first P wave and the first S wave. In this 

case, the first P and S waves are 24 seconds apart.  

 

Use the amplitude to derive the magnitude of the earthquake, and the distance from 
the earthquake to the station. (from Bolt, 1978) 
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2. Find the point for 24 seconds on the left side of the previous chart and mark it. 

According to the chart, this earthquake's epicenter was 215 kilometers away.  

3. Measure the amplitude of the strongest wave. The amplitude is the height (on 

paper) of the strongest wave. Here, the amplitude is 23 millimeters. Find 23 

millimeters on the right side of the chart and mark that point. 

4. Place a ruler (or straight edge) on the chart between the points you marked for 

the distance to the epicenter and the amplitude. The point where your ruler 

crosses the middle line on the chart marks the magnitude (strength) of the 

earthquake. This earthquake had a magnitude of 5.0. 

Finding the Epicenter 

You have just figured out how far your seismograph is from the epicenter and how 

strong the earthquake was, but you still don't know exactly where the earthquake 

occurred.  

This is where the compass, the map, and the other seismograph records come in. 

Check the scale on your map. It should look something like a piece of a ruler. All 

maps are different. On your map, one centimeter could be equal to 100 kilometers 

or something like that.  

 

The point where the three circles intersect is the epicenter of the earthquake. This 
technique is called 'triangulation.' 
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Figure out how long the distance to the epicenter (in centimeters) is on your map. 

For example, say your map has a scale where one centimeter is equal to 100 

kilometers. If the epicenter of the earthquake is 215 kilometers away, that equals 

2.15 centimeters on the map.  

Using your compass, draw a circle with a radius equal to the number you came up 

with in Step #2. The center of the circle will be the location of your seismograph. The 

epicenter of the earthquake is somewhere on the edge of that circle. 

Do the same thing for the distance to the epicenter that the other seismograms 

recorded (with the location of those seismographs at the center of their circles). All 

of the circles should overlap. The point where all of the circles overlap is the 

approximate epicenter of the earthquake. 

How Are Earthquake Magnitudes Measured 

 The Richter scale 

The magnitude of most earthquakes is measured on the Richter scale, invented by 

Charles F. Richter in 1934.  

The Richter magnitude is calculated from the amplitude of the largest seismic wave 

recorded for the earthquake, no matter what type of wave was the strongest. It is 

based on a logarithmic scale (base 10).  

 

Charles Richter studying a seismogram. 

What this means is that for each whole number you go up on the Richter scale, the 

amplitude of the ground motion recorded by a seismograph goes up ten times.  
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Using this scale, a magnitude 5 of an earthquake would result in ten times the level 

of ground shaking as a magnitude 4 earthquake (and 28-32 times as much energy 

would be released).  

To give you an idea how these numbers can add up, think of it in terms of the energy 

released by explosives: a magnitude 1 seismic wave releases as much energy as 

blowing up 6 ounces(6x28.35 gr) of TNT. A magnitude 8 earthquake releases as much 

energy as detonating 6 million tons of TNT. 

Fortunately, most of the earthquakes that occur each year are magnitude 2.5 or less, 

too small to be felt by most people. 

The Richter magnitude scale can be used to describe earthquakes so small that they 

are expressed in negative numbers. The scale also has no upper limit, so it can 

describe earthquakes of unimaginable and (so far) inexperienced intensity, such as 

magnitude 10.0 and beyond. 

Although Richter originally proposed this way of measuring an earthquake's "size," 

he only used a certain type of seismograph and measured shallow earthquakes in 

Southern California.  

Scientists have now made other "magnitude" scales, all calibrated to Richter's 

original method, to use a variety of seismographs and measure the depths of 

earthquakes of all sizes. 

Here is a table describing the magnitudes of earthquakes, their effects, and the 

estimated number of those earthquakes that occur each year. 

 

 Earthquake Magnitude Scale 

Magnitude Earthquake Effects Estimated 
Numb/Year 

2.5 or less Usually not felt, but can be recorded by seismograph. 900,000 

2.5 to 5.4 Often felt, but only causes minor damage. 30,000 

5.5 to 6.0 Slight damage to buildings and other structures. 500 

6.1 to 6.9 May cause a lot of damage in very populated areas. 100 

7.0 to 7.9 Major earthquake. Serious damage. 20 

8.0 or greater 
Great earthquake. Can totally destroy communities near the 
epicenter. 

One every 5 
to 10 years 

http://www.geo.mtu.edu/UPSeis/magnitude.html
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 Earthquake Magnitude Classes 

Earthquakes are also classified in categories ranging from minor to great, depending 

on their magnitude. 

Class Magnitude 

Great  8 or more 

Major  7 - 7.9 

Strong  6 - 6.9 

Moderate  5 - 5.9 

Light  4 - 4.9 

Minor  3 -3.9 

 The Mercalli Scale 

Another way to measure the strength of an earthquake is to use the Mercalli scale. 

Invented by Giuseppe Mercalli in 1902, this scale uses the observations of the people 

who experienced the earthquake to estimate its intensity.  

The mercalli scale isn't considered as scientific as the richter scale, though. Some 

witnesses of the earthquake might exaggerate just how bad things were during the 

earthquake and you may not find two witnesses who agree on what happened; 

everybody will say something different. The amount of damage caused by the 

earthquake may not accurately record how strong it was either. 

 
 

Giuseppe Mercalli 

Some things that affect the amount of damage that occurs are: 

http://www.geo.mtu.edu/UPSeis/Mercalli.html
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• the building designs,  

• the distance from the epicenter and 

• the type of surface material (rock or dirt) the buildings rest on.  

Different building designs hold up differently in an earthquake and the further you 

are from the earthquake, the less damage you'll usually see. Whether a building is 

built on solid rock or sand makes a big difference in how much damage it takes. Solid 

rock usually shakes less than sand, so a building built on top of solid rock shouldn't 

be as damaged as it might if it was sitting on a sandy lot. 

What Are Earthquake Hazards 

Earthquakes really pose little direct danger to a person. People can't be shaken to 

death by an earthquake. Some movies show scenes with the ground suddenly 

opening up and people falling into fiery pits, but this just doesn't happen in real life. 

 The Effect of Ground Shaking 

The first main earthquake hazard (danger) is the effect of ground shaking. Buildings 

can be damaged by shaking themselves or by the ground beneath them settling to a 

different level than it was before the earthquake (subsidence). 

 

These men barely escaped when the front of the anchorage J.C. Penny's collapsed 
during the 1964 Good Friday earthquake. 



 - 24 - 

 

 

 

One side of this Anchorage street dropped drastically  
during the 1964 Good Friday earthquake. 

Buildings can even sink into the ground if soil liquefaction occurs. 

 

These buildings in Japan toppled when the soil underwent liquefaction. 
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Liquefaction is the mixing of sand or soil and groundwater (water underground) 

during the shaking of a moderate or strong earthquake. When the water and soil are 

mixed, the ground becomes very soft and acts similar to quicksand.  

If liquefaction occurs under a building, it may start to lean, tip over, or sink several 

feet. The ground firms up again after the earthquake has past and the water has 

settled back down to its usual place deeper in the ground. Liquefaction is a hazard in 

areas that have groundwater near the surface and sandy soil. 

Buildings can also be damaged by strong surface waves making the ground heave 

and lurch.  

Any buildings in the path of these surface waves can lean or tip over from the 

movement.  

The ground shaking may also cause landslides, mudslides, and avalanches on steeper 

hills or mountains, all of which can damage buildings and hurt people. 

 Ground Displacement 

The second main earthquake hazard is ground displacement (ground movement) 

along a fault. If a structure (a building, road, etc.) is built across a fault, the ground 

displacement during an earthquake could seriously damage or rip apart that 

structure. 

 

This road, which crosses the San Andreas fault, was cut in half by the 1906 
earthquake. One end of the road slid 6.5 meters past the other during the quake. 
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From the previous picture it is obvious that San Andreas fault is a right-lateral 

transverse (strike-slip) fault, because the other side of the road (on the opposite side 

of the fault) has moved to the right, relative to the photographer's position. 

 Flooding 

The third main hazard is flooding. An earthquake can rupture (break) dams or levees 

along a river. The water from the river or the reservoir would then flood the area, 

damaging buildings and maybe sweeping away or drowning people. 

 

The Seward, Alaska, railroad yard was a twisted mess after being hit by a tsunami in 
1964. The tsunami was triggered by the Good Friday earthquake 

Tsunamis and seiches can also cause a great deal of damage.  

A tsunami is what most people call a tidal wave, but it has nothing to do with the 

tides on the ocean. It is a huge wave caused by an earthquake under the ocean. 

Tsunamis can be tens of feet high when they hit the shore and can do enormous 

damage to the coastline.  

Seiches are like small tsunamis. They occur on lakes that are shaken by the 

earthquake and are usually only a few feet high, but they can still flood or knock 

down houses, and tip over trees. 

 Fire 

The fourth main earthquake hazard is fire. These fires can be started by broken gas 

lines and power lines, or tipped over wood or coal stoves. They can be a serious 

problem, especially if the water lines that feed the fire hydrants are broken.  



 - 27 - 

 

 

For example, after the Great San Francisco Earthquake in 1906, the city burned for 

three days. Most of the city was destroyed and 250,000 people were left homeless. 

 

San Francisco burning after the 1906 earthquake 

Most of the hazards to people come from man-made structures themselves and the 

shaking they receive from the earthquake.  

 Conclusions 

In conclusion, the real dangers to people are: 

• being crushed in a collapsing building,  

• drowning in a flood caused by a broken dam or levee,  

• getting buried under a landslide, or  

• being burned in a fire. 
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Complementary concepts of engineering seismology 

 Geographical distribution of earthquakes 

An earthquake is a ground vibration caused mainly by the fracture of the earth crust 

or by a sudden movement along an already existing fault. This is the majority of the 

cases which constitute the so called ‘tectonic earthquakes’.  

Very rarely earthquakes may be caused by volcanic eruptions. 

A well established and widely accepted theory of tectonic earthquakes is the ‘elastic 

rebound theory’ developed in 1906 by Reid. According to this theory, earthquakes 

are caused by a sudden release of elastic strain energy in the form of kinetic energy 

along the length of a geological fault. 

The accumulation of the above strain energy can be explained by the theory of 

motion of lithospheric plates, which constitute the crust of the earth.  

These plates are originated in the oceanic rifts and they sink in the continental 

trench system. 

 

Tectonic plates 

The boundaries of the lithospheric plates coincide with the geographical zones which 

experience frequent earthquakes. 
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 Recording equipment of earthquakes 

The evaluation of earthquake motions is mainly performed by two basic categories 

of instruments: 

1. The seismographs which record the displacement of the ground as a function of 

time. They operate on a continuous real-time basis. Their recordings are of interest 

mainly to the seismologists. 

 

A typical seismograph  

A typical accelerogram 
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2. The accelerographs for ground acceleration as a function of time.  

They are adjusted to start operating whenever the ground acceleration exceeds a 

certain level. They are used for recording strong ground motions that are of interest 

to structural engineers for the design of structures (strong motion accelerographs) 

 The evaluation of the earthquake phenomenon 

The magnitude and the intensity are terms that were developed in an effort to 

evaluate the earthquake phenomenon. 

  Earthquake magnitude 

The magnitude of an earthquake measures the energy which is released in the form 

of seismic waves at the point of origin. It is expressed on the Richter scale, named 

after the seismologist who invented it. 

The local magnitude ML of an earthquake is a function of the energy E, released from 

the epicenter  

)(44.124.12log ergME L+=  

This relation indicates that, if the magnitude of the earthquake is increased by a unit, 

then the corresponding increase of energy is about 28 times. 

  Earthquake intensity 

The term intensity of an earthquake is a measure of the consequences on the people 

and the structures of a certain area. Of course it is impossible to measure the 

damage due to an earthquake using a single quantity system. For this reason the 

damage is estimated using empirical intensity scales, the most common of which is 

the modified Mercalli (MM) scale. 

An earthquake has only one magnitude but different intensities from place to 

place. The intensity generally attenuates as the distance from the epicenter 

increases. The soil conditions have a significant effect on the distribution of 

structural damage. 

If the points of equal intensity are connected on a map, the curves that yield are 

called isoseismal contours and divide the affected area into sections of equal 

intensity. 

From the structural design point of view, the ideal way to estimate the seismic 

hazard of an area is the existence of long-term records of strong seismic motions 

(accelerograms) along with the statistical processing of their basic elements. 
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Instruments for keeping seismological records 

However, unfortunately, such seismological records did not exist before the last 

century, and the information is generally limited. 

Therefore the only way to estimate the seismic hazard is the one which combines 

limited seismic motion records with the estimations of intensity of previous 

earthquakes, using scales such as the MM scale. 

  Seismicity 

The term Seismicity is a parameter which increases both with the magnitude and the 

frequency of occurrence of an earthquake in an area. 

For this reason the definition of seismicity is based on the statistical law of 

Gutenberg, giving the frequency N (number of earthquakes per year) as a function of 

their magnitude M (or larger) 

𝑙𝑜𝑔𝑁 = 𝑎 − 𝑏𝑀 , 

where a and b are statistically defined constants, which, for the area of Greece used 

to have the values 

α = 5.99 and       b = 0.94 

Based on the values of a and b, the number of earthquakes per year, Nm, that have a 

magnitude M or larger is   

𝑁𝑚  =   10
𝑎/10𝑏𝑀 .  
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  Seismic hazard 

The seismic hazard in an area expresses the probability of occurrence of an 

earthquake with acceleration ag or intensity I larger than a certain value, in a certain 

period of time.  

Of course it can also express the acceleration ag or intensity I, for which the 

probability of exceeding (ag or I) in a certain period is less than a certain level. 

Generally the intensity of an earthquake or the maximum acceleration are 

parameters that are decreased as the distance from the epicenter increases. 

However, the statistical evaluation of a large number of earthquakes have produced 

some empirical attenuation laws, relating the intensity or maximum acceleration 

with the magnitude M of the earthquake and the distance Δ from the epicenter. 

Ambraseys, Simson & Bommer (1966) for instance have proposed the following 

attenuation relationship: 

𝑙𝑜𝑔𝑎 =  −1.47 + 0.266𝑀 − 0.922𝑙𝑜𝑔𝑅 + 0.1𝑆𝐴 + 0.094𝑆𝑆 + 0.25𝑃 

where  𝑅 =  √𝛥2 + 3.52,  Δ is the epicentral distance in km, M the magnitude of the 

earthquake on the Richter scale and a the peak ground acceleration.  

For rocks SA and SS = 0, while:   

P = 1 for 16% and P = 0 for 50% probability of exceeding. 

The above attenuation relationship gives rise to draw the “ground acceleration 

versus repeat period” curve, which is of the following form: 

    1,2 
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Indeed, assuming rocks, a probability of exceeding 50% and a known value of M 

(Richter scale), for each value of acceleration a1 (cm/sec2), a certain value of the 

epicentral distance Δ1 (km) is yielded. 

Then, taking into account that the seismic area A1 (associated with the value a1) is a 

circle with a radius Δ1, where the unknown repeat period T1 corresponds, from a 

given area A0 with its repeat period T0, we can solve for T1 the equation 

𝐴0𝑇0 = 𝐴1𝑇1   where  𝐴1 = 𝜋 ∙ 𝛥1
2 . 

We therefore end up with a pair of values (a1, T1). 

Repeating the procedure for a satisfactory number of pairs, the curve of the 

preceding figure can be drawn. 

  Conclusions 

Summarizing the basic concepts presented above the following points could be of 

special interest: 

1. As a natural phenomenon, an earthquake is of special interest for structural 

engineers and becomes hazardous in certain seismic areas when it is 

considered in relation with structures. 

2. The magnitude of an earthquake on the Richter scale measures the energy 

released at its point of origin. The destructiveness however of an earthquake, 

although partly related to its magnitude, is a function of many other 

parameters like the focal depth, the epicentral distance, the soil conditions 

and the mechanical properties of the structures. 

3. The intensity of an earthquake expresses the consequences on both the 

people and the structures of a certain area. 

4. The earthquake is an independent phenomenon and for a reliable estimate of 

seismicity and seismic hazard, we need long term records. 

5. Taking into account that the estimate of seismic hazard of an area is based on 

information of limited reliability, it is logic to base the safety of structures on 

specially designed extra reserves of strength and energy-dissipation 

mechanisms at a low additional cost. This point is the basic concept for the 

design of earthquake resistant structures. 



 - 34 - 

 

 

BASIC MECHANICS ON SEISMOLOGY 

 Single degree of freedom oscillators 

Consider the following system where a mass, m, is resting on two columns of 
height h and stiffness k.  

 

If a force P is applied on the center of gravity (CG) of the mass, then, on the 
plane of paper, the only move the mass can do is a parallel to the ground. In this case 
we say that the system is a single degree of freedom (SDOF) oscillator. Examples of 
such systems are water towers, bridges, machines resting on springs etc.  

Depending on the way a column is supported, its stiffness is: 
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if one end is fixed the other is pinned or free. 

The term  J,  represents the second moment of area of the column’s cross 
section with respect to a cendroidal axis, perpendicular to the direction of stiffness. 
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Taken into account that the second moment of area of a rectangular cross section is:  

12

3
ba

J xx


= , once xx is perpendicular to the stiffness direction, we conclude 

that the side which is parallel to the direction of stiffness has to be raised to the 
power of 3. 

The displacement δ, is another way to express the stiffness of the column. In 
other words k is the force which causes a mass displacement equal to the unit 
length. 

 Free oscillations 

Consider a SDOF system shown below, which, being under acceleration ü, has 
been forced to a horizontal displacement u. Both the acceleration and the 
corresponding displacement vary with respect to time. 

 

If there is no dumping on the system and k is its total stiffness, the inertial 
force mü obviously must be compensated by the equal and opposite force –ku. This 
situation, which is just a simple way of thinking, is expressed by the D’ Alembert 
second order differential equation: 

m·ü + k·u = 0    (1),          or    ü + ω2·u = 0         (2),       where       
m

k
=  . 

The quantity  ω = 2π/T,  called natural frequency of the system, is expressed 
in rad/sec. The magnitude T, called natural period of the system, denotes the 
necessary time for a full circle of oscillation. 

The general solution of the above differential equation (2), will yield if we 
find two partial solutions that satisfy the equation. Indeed, we note that the function  

 u = sin(ωt)   is  a  solution of (2), because it is: 

 �̇� = ωcos(ωt)    and    �̈� = - ω2sin(ωt).   

Therefore equation (2) becomes:  - ω2sin(ωt) + ω2sin(ωt) = 0   and  is satisfied! 
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Besides, the function: 

 u = cos(ωt)   is also a solution of (2) as similarly can be found out. 

The general solution of equation (2) is therefore 

 u = C1 sin(ωt) + C2cos(ωt) (3) 

where  C1  and   C2  are constants that can be calculated from the conditions 
of the system. Actually, if for t = 0  the velocity of the system is equal to zero, i.e.  

if  �̇� = 0,   or   ω·C1cos(ωt) - ω·C2 sin(ωt) = 0 (4),   then  u  becomes maximum. 

From (4)  yields:      ω·C1·1 - ω·C2 ·0 = 0    or    C1 = 0. 

Consequently equation (3) becomes:  u = C2cos(ωt)  and  its maximum value, 
for cos(ωt) = 1,  is 

 umax = C2 = u0 

The value  u0  is obviously the amplitude of oscillation. 

Finally, the solution of differential equation, takes the form 

 u = u0cos(ωt) 

and has the following graphical representation 

 

 Damping 

All the structures during their oscillation present damping, i.e. absorbing of 
energy. As a result, the amplitude of their free oscillation is getting less and less by 
the time. 

Damping exists even in ideal materials and is due to the internal friction 
developed during the deformation. In real structures it is also due to other reasons, 
like small cracks appeared in reinforced structures, friction developed on the nodes 
of steel structures, on the non elastic deformation of non loaded elements (walls) 
etc. 
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For the mathematic simulation of damping, we consider an accessional force, 
proportional to the relevant velocity, i.e.   𝑓𝑑(𝑡) = 𝐶 ∙ �̇�(𝑡) . 

The value of C is practical impossible to be calculated. 

 The D’ Alembert equation with damping 

During an earthquake, the ground, and consequently the base of a structure 
which is founded on it, is quickly moved with an alternate sign, around an initial 
location of rest. From the dynamic point of view, the magnitude we are interested in 
is the ground acceleration �̈�𝑔(𝑡). The mass of structure, due to its inertia, does not 

follow the motion of base; it moves differently, presenting its own oscillation. Due to 
this different motion between mass and base, the structure is deformed and 
develops internal forces. 

The ground-move is presented by xg(t) and the relevant mass-move, with 
respect to its base, by u(t). The total move realized during t time, measured from the 
initial position of structure (absolute move) is:  x(t) = xg(t) + u(t). 

 

Keeping in mind the D’ Alembert theorem, it has to be noted: 

• The left system (real situation) is equivalent to the right system 

• On the right system the force acted on the center of mass-gravity is: 

𝑝(𝑡) =  −𝑚 ∙ �̈�𝑔 . 

Applying the Newton’s second law for the horizontal direction it holds: 

p – fs – fd = mü . 

Substituting the relevant quantities, 
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𝑚�̈� +  𝐶�̇� +  𝐾𝑢 =  −𝑚�̈�𝑔, 

or dividing by the mass m, 

 �̈� +  2𝜁𝜔�̇� + 𝜔2𝑢 =  −�̈�𝑔, 

where  ω is the natural frequency of structure defined as before, i.e. 

𝜔 = √
𝐾

𝑚
 

and  ζ  is the damping ratio defined by the relation: 

𝜁 =  
𝐶

2√𝛫𝑚
= 

𝐶

2𝑚𝜔
 

The natural period of the oscillator is of course associated with the natural 
frequency through the equation  

𝑇 =  
2𝜋

𝜔
= 2𝜋√

𝑚

𝐾
 

The natural frequency is dependent on the mass and the stiffness of the 
structure only; not on the excitation. The damping ratio ζ is a pure (non dimensional) 
number and, depending on the material of the structure, can be calculated 
experimentally. The value ζ =1 is called critical damping. In this case the structure 
comes back to its initial point of equilibrium without oscillations. 

 Response spectrum 

A response spectrum is a diagram that gives the maximum response for a 
magnitude of our interest, e.g. absolute acceleration, relevant displacement etc., of 
all the SDOF oscillators under a specific damping, for a given seismic excitation, 
according to their natural period. 

The procedure to construct a response spectrum may be the following: 

• Choice of damping ratio e.g. ζ = 5%, for which the spectrum responses. 

• Choice of natural period of an oscillator, e.g. T = 0.1 sec. 

• Calculation of oscillator’s time history response u(t) for the given seismic 

excitation 

• Calculation of the absolutely maximum value of response: max |𝑢(𝑡)|. 

• Repetition of the above procedure for many values of natural period T. 

• Depiction on a diagram of the various values max |𝑢(𝑡)| versus T. 
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Through this curve the maximum displacement of any structure may be 
calculated for this seismic excitation, provided its damping ratio is the same with 
that of spectrum. 

Apart from the relevant displacement, response spectra can be created for 
any other magnitude, e.g. absolute acceleration. Usual response spectra are for: 

• Relevant displacements: provide values for max |𝑢(𝑡)| and are represented 

by SD or Sd (Spectral Displacement) 

• Relevant velocities: provide values for max |�̇�(𝑡)| and are represented by SV 

or Sv (Spectral Velocity) 

• Absolute accelerations: provide values for max |�̈�(𝑡)| and are represented by 

SA or Sa (Spectral Acceleration) 

For usual values of natural periods T and damping ratios ζ, an increase of 
damping generally implies a decrease of the spectral values.  

This is the reason that on the same diagram more than one spectra, 
corresponding to different damping ratios, are presented. 

 Pseudospectra 

For small values of the damping ratio (ζ ≤ 20%) it holds approximately: 

𝑆𝐴 ≅  𝜔2 ∙ 𝑆𝐷 = 𝑃𝑆𝐴  (a) 

𝑆𝑉 ≅  𝜔 ∙ 𝑆𝐷 = 𝑃𝑆𝑉   (b) 

where: PSA (Pseudo Spectral Acceleration) 

 PSV (Pseudo Spectral Velocity) 

 Spectral limits 

Spectra tend to have characteristic values for very small and very large 
natural periods, as follows: 

For structures of very large stiffness (T → 0): 

 SD → 0  SV → 0  SA → �̈�𝑔,𝑚𝑎𝑥 

For structures of very small stiffness (T → ∞): 

 SD → xg,max  SV → �̇�𝑔,𝑚𝑎𝑥  SA → 0. 
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Three-part logarithmic form of spectrum 

The linear logarithmic relations (a) and (b) give rise to draw all three spectra 
in one three-part diagram with logarithmic axes. 

 

Response spectra of Kalamata’s earthquake (1986) for ζ=0, 2,5,10 and 20 in 
3l-form 

The horizontal axis corresponds to the natural period, T and the vertical to 
the pseudo-velocity, PSV. Apart from these axes, there are two more; the first, under 
45° with horizontal, corresponds to the spectral displacement, SD and the second, 
under 135°, corresponds to the spectral pseudo-acceleration PSA. 
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The projection of a spectral point, corresponding to a natural period T, on the 
three axes, SD, PSV and PSA gives the values of the corresponding spectral 
magnitudes for a SDOF oscillator presenting this period. 

The above spectral depiction is called three-logarithmic form of spectrum, 
due to the three logarithmic axes of the spectral magnitudes. It is also referred to as 
four-logarithmic form, if we take into account – the logarithmic as well – axis of 
natural periods. 

 Characteristic spectral regions 

On a spectral response, especially when it has the three-logarithmic form, we 
can distinguish different regions. In particular: 

 

Fig A Response spectrum from the El Centro (1940) earthquake for ζ=5% 
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• For small periods, the spectral acceleration is practically equal to the ground 

acceleration. 

• In the region BC, the spectral acceleration is almost constant. 

• In the region CD, the spectral velocity is almost constant. 

• In the region DE, the spectral displacement is almost constant. 

The width of natural period for each region depends on the characteristics of 

the seismic excitation, which in turn are affected by the magnitude of the 

earthquake, the mechanism of creation, the distance from the epicenter and the 

local properties of the ground. 

 Effective acceleration and velocity 

The peak ground acceleration,  pga = �̈�𝑔,𝑚𝑎𝑥  and the peak ground velocity,  

pgv =  �̇�𝑔,𝑚𝑎𝑥,  developed during an earthquake are not the proper indices for the 

evaluation of its intensity or destructivity, because they do not provide information 

for the duration of the excitation.  

For this reason when a design spectrum is going to be constructed, the 

Effective Peak Acceleration (EPA) and the Effective Peak Velocity (EPV) are used to 

evaluate the intensity of the ground motion. The effective values of acceleration and 

velocity do not have any natural meaning but they constitute a normalized scheme 

for the seismic excitation parameters.  

Their evaluation can be realized making use of the regions BC and CD of the 

previous region, where the spectral acceleration and velocity keep respectively 

constant values. There is not a clear way of estimating them, but the relations of 

Newmark & Hall, 1969, McGuire, 1975, are often in use: 

EΡA = PSABC/2.5 

EΡV = PSVCD/2.5 , 

where PSABC is the average value of spectral accelerations for damping ratio ζ=5% in 

the period region between 0.1 and 0.5 and PSVCD is the average value of spectral 

velocities in the period region close to 1.0 sec. The coefficient 2.5 corresponds to 

earthquakes of a normal duration. For very small or very large length of time, the 

above values must be accordingly corrected. 

Specifically for earthquakes of small duration the values must be decreased while for 

a large duration they have to be increased. The necessary correction does not follow 
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a specific procedure and is realized in a rational way, taking into account the 

remaining characteristics of the seismic excitation. 

The values of EPA and EPV, yielded from the above procedure may be greater 

or less from the corresponding maximum values of the ground motion. Usually it is: 

EPA < pga       and       EPV > pgv. 

 Elastic design spectrum 

The response spectra of recorded earthquakes present significant variation, 

depending mainly on the characteristics of seismic vibration and the local ground 

conditions. For this reason, at the design stage of structures we use a flattened 

spectrum that covers all the spectral forms of possible earthquakes that can hit the 

region of work. 

For the construction of a design spectrum the parameters to be taken into 

account are: 

• The effective values of the local ground motion (as described before) and 

• The local ground conditions at the region of work. 

 

Response Spectra for damping ratio ζ=5% 

 Ground acceleration 

Values of the expected ground acceleration and velocity can be derived as a result 

of a seismic risk design after statistical processing of seismic events that happened in 
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the greater region of the work. Such investigations are elaborated for significant 

works, while for standard and usual constructions the values are provided by the 

Codes according to the area in which the structure belongs. 

In the Greek seismic code three zones of seismic risk are stated; for each zone 

the effective acceleration, A (g) is presented in the following table. 

Seismic risk zone Effective acceleration, A (g)                       

I   0.16 

II   0.24 

III   0.36 

These values have been derived through a seismic risk design and correspond to a 

repeat period of about 500 years, i.e. they occur once every 500 years on average. 

Considering that seismic events follow the Poisson’s distribution, this means 

that there is a possibility of 10% to occur an earthquake in the next 50 years (which 

is a conventional life duration of structures), that will cause an acceleration greater 

than that of the table. This possibility is acceptable for conventional constructions.  

However, the values of the above table have to be multiplied by the 

importance factor of structure γΙ, when the building is of great significance or value. 

The values of γΙ, are fluctuated from 1.0 to 1.30. Through this way the possibility of 

excess is decreased and the design covers seismic events corresponding to a greater 

repeat period (1000 or 2000 years). In the following as a ground acceleration will be 

considered the value γΙ·Α. In the Greek seismic code this value is presented by ag. 

The Greek seismic code considers that the corresponding to each region 

value of ground acceleration γΙ·Α is independent of the local ground conditions. On 

the contrary, the Euro-code 8 assumes that the above values of table hold only for 

rocky and very hard soil; therefore if a structure is going to be founded on a softer 

ground, then these values are multiplied by the soil coefficient, S. The values of S are 

fluctuated between 1.00 and 1.40. 

 Soil influence 

Apart from the ground acceleration value, which is influenced – according to 

Euro-code 8 – by the soil class, the quality of ground on which the structure is 

founded, may significantly influence the form of design spectrum. 

The dependence of design spectrum upon the ground conditions is expected, 

as the structure will be excited by the ground motion on the level of foundation and 

this motion is the result of the ground response to the seismic excitation. 
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The large influence of soil characteristics on the response spectra is shown on 

the next figure, where the average normalized response of the California and Japan 

earthquakes is depicted. 

 

 Elastic design spectrum (Greek seismic code and Euro-code 8) 

The modern seismic codes take into account the influence of the ground 

properties on the form of the design spectra modifying the characteristic periods TB 

and TC, which define the start of the regions: BC, where the spectral acceleration is 

almost constant. and CD, where the spectral velocity is almost constant, shown 

already in the Fig A of the preceding unity. 

The Greek seismic code includes four soil classes A, B, C and D, while the 

Euro-code 8 has five, A, B, C, D and E. A description of each class is provided in the 

corresponding code. 

It has to be notified that the characteristic period TD, which defines the start 

of the constant displacement region, is not soil dependant. 

Characteristic periods of a design spectrum according to the Greek seismic code 

S o i l   c l a s s TB (sec)(1) TC (sec)(1) TD (sec)(2) 

A 0.10 0.40 2.50 

B 0.15 0.60 2.50 

C 0.20 0.80 2.50 

D 0.20 1.20 2.50 
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(1)  In the Greek seismic code TB and TC are referred to as T1 and T2 respectively. 

(2)  TD is used only for structures presenting seismic isolation. 

Soil coefficient and characteristic periods of a design spectrum according to the 

Euro- code 8 

S o i l   c l a s s S TB (sec) TC (sec) TD (sec) 

A 1.00 0.15 0.40 2.00 

B 1.20 0.15 0.50 2.00 

C 1.15 0.20 0.60 2.00 

D 1.35 0.20 0.80 2.00 

E 1.40 0.15 0.50 2.00 

 

In the following figure is depicted the form of the elastic design spectrum 

according to Euro-code 8 for a damping ratio ζ=5%. The corresponding spectrum for 

the Greek code is similar, apart from the soil coefficient S. We classify four regions: 

 

1. For T  TB the design spectral acceleration, Sd, presents an upward route by 

an increase of the period. For T = 0,  Sd = S·ag  and for T = TB, Sd = 2.5·S·ag. It is 

reminded that ag = γI·A, where A = ag,d is the design acceleration for a rocky 

soil and a repeat period of 475 years. 

2. For TB T  TC the spectral acceleration remains constant:  Sd = 2.5·S·ag. 
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3. For TC T  TD the spectral velocity remains constant and consequently the 

spectral acceleration is reversely decreased by the increase of period, 

following the relation:  Sd = 2.5·S·ag·(TC/T). 

4. For TD T  the spectral displacement remains constant and consequently the 

spectral acceleration is reversely decreased by the square increase of period, 

following the relation:  Sd = 2.5·S·ag·(TC·TD/T2). 

For a damping ratio different from 5%, the spectral values are multiplied by 

the damping modification factor, η, given by the equation: 

2

7

+
=


 for the Greek seismic code and 

5

10

+
=


 for the Euro-code 8,  

where the value of ζ is entered as percentage. 
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Seismic force distribution - Displacements 

In this part the horizontal seismic force will be distributed on to the columns 

that sustain a slab of a single storey structure. Then the displacement of the slab will 

be estimated as an algebraic sum of a parallel movement along with a rotation. 

Consider a single floor structure that behaves elastically, with double fixed 

columns and a horizontal seismic force, P, of a random direction acted on the mass 

of the slab.  

It has to be noted that the slab behaves as a non deformable structure, like a 

rigid disc. In this case we characterize the function of slab as diaphragmatic. This 

theory aims at finding out the movement and rotation of the slab due to the 

horizontal seismic force along with the distribution of this force to the existing 

columns. 

a) Displacement and rotation of slab 

The seismic force is obviously applied on the center of gravity (CG) of the 

slab, which, as a result, will move and rotate. 

The rotation of the slab will be realized with respect to a point, called Center 

of Elastic Rotation (CER), the location of which depends on the stiffnesses of columns 

which sustain the slab. Of course the slab will rotate around the CER only if there is 

an eccentricity (distance) of the seismic force with respect to the CER; in other words 

the rotation is realized only when the force does not pass through the CER. In this 

case we have a static eccentricity of the structure. 

 

If we call  kix the stiffness of the ith column for a y-y seismic direction, i.e. stiffness, 

where the second moment of area of the column’s cross section has been taken with 
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respect to a x0-x0 cendroidal axis parallel to x-x, kiy the corresponding stiffness for a 

x-x direction and kiω the column’s rotational stiffness, then the coordinates of CER 

with respect to a Cartesian system, are given through the following relations: 

𝑥𝐶𝐸𝑅 =
∑ (𝑥𝑖 ∙ 𝑘𝑖𝑥)
𝑛
𝑖=1

∑ 𝑘𝑖𝑥
𝑛
𝑖=1

 

𝑦𝐶𝐸𝑅 =
∑ (𝑦𝑖 ∙ 𝑘𝑖𝑦)
𝑛
𝑖=1

∑ 𝑘𝑖𝑦
𝑛
𝑖=1

 

where xCER and yCER are the coordinates of CER, xi and yi are the coordinates of the ith 

column’s cross sectional centroid and n the number of columns. 

Now, if we define a new coordinate system �̅�𝑂�̅� with axes parallel to the 

previous and having the CER as origin, then, for any point S, it holds: 

�̅�𝑆 = 𝑥𝑆 − 𝑥𝐶𝐸𝑅 

�̅�𝑆 = 𝑦𝑆 − 𝑦𝐶𝐸𝑅 

Similarly for the Center of gravity (CG), it holds: 

�̅�𝐶𝐺 = 𝑥𝐶𝐺 − 𝑥𝐶𝐸𝑅  

�̅�𝐶𝐺 = 𝑦𝐶𝐺 − 𝑦𝐶𝐸𝑅 

We therefore can consider all the columns of structure equivalent to “one” 

only column, presenting a stiffness equal to the total stiffness of columns and laid on 

the CER, i.e. 

𝑘𝑥 =∑𝑘𝑖𝑥

𝑛

𝑖=1

 

𝑘𝑦 =∑𝑘𝑖𝑦

𝑛

𝑖=1

 

𝑘𝜔 =∑(𝑘𝑖𝜔 + �̅�𝑖
2 ∙ 𝑘𝑖𝑥 + �̅�𝑖

2 ∙ 𝑘𝑖𝑦)

𝑛

𝑖=1

 

where,   
h

GJ p
=ik  .   In this equation, are: 

• G the shear modulus of elasticity, also called the modulus of rigidity, related with 

the Jung’s modulus E, by the equation  
+

= 4.0
)1(2 

E
G , where ν is the 

Poisson’s ratio, keeping the absolute value of εq/ε, which is roughly 0.25. 
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• Jp the polar moment of inertia, expressed by  
32

D
4


=


pJ .  For columns with 

square sections of side α,  it is:  Jp = 0.1406·α4.  

• h  the height of the structure. 

However, the term kiω, being too small compared to the others, is omitted. 

It can be observed that the further away elements of large stiffness (wall 

columns) are laid, the greater becomes the rotational stiffness of structure, resulting 

in a reduction of the columns’ and structure’s rotation. 

Now, as a result of the seismic force P, if  

• u and v are respectively the movements of the slab on the x-x and y-y 

directions and 

• ω is the rotation of the slab with respect to the CER, then obviously: 

The movement u of the slab on the x-x direction will be expressed as the ratio 

of the horizontal component of P divided by the total stiffness on the x-x direction, 

i.e. 

𝑢 =
𝑃𝑥
𝑘𝑥

 

Similarly, the movement v of the slab on the y-y direction will be expressed as 

the ratio of the vertical component of P divided by the total stiffness on the y-y 

direction, i.e. 

𝑣 =
𝑃𝑦

𝑘𝑦
 

Finally, the rotation of the slab around the CER will be expressed as the ratio 

of the moment M of P (with respect to CER) divided by the total rotational stiffness 

of structure, i.e. 

𝜔 =
𝑀

𝑘𝜔
= −

𝑃 ∙ 𝑅

𝑘𝜔
 

where R is the lever of P (i.e. the CER ‘s distance from P). 

Taking instead the corresponding components of P, i.e. Px and Py, along with 

their levers with respect to the CER, the previous equation becomes: 

𝜔 =
−𝑃𝑥 ∙ �̅�𝐶𝐺 + 𝑃𝑦 ∙ �̅�𝐶𝐺

𝑘𝜔
                        (𝑎) 
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b) Force distribution to columns 

In order to realize the distribution of seismic force, finding thus the shear 

forces of columns, it is necessary to calculate the movements of columns’ heads 

along with their rotation due to the slab’s displacement. 

 

If S is the CG of a column and uS and vS are respectively its horizontal and 

vertical movements due to the slab’s rotation, then the total horizontal displacement 

of S (see figure above), is: 

𝑢𝑆 =
𝑃𝑥
𝑘𝑥
− 𝑢𝑆

𝜔 

The first term comes from the horizontal movement of slab while the second 

expresses the horizontal movement of S due to the slab’s rotation. It has to be noted 

that the second term is different from point to point, depending on the location of S 

with respect to CER. From figure it is: 

uS
ω = (r·ω)·sinθ = (r·sinθ)·ω = �̅�𝑆 · 𝜔. 

Putting this value of uS
ω into the previous equation, it yields 

𝑢𝑆 =
𝑃𝑥
𝑘𝑥
− �̅�𝑆 · 𝜔 

In this equation if we substitute the value of ω coming from equation (α), we 

end up with the total horizontal displacement of column 

𝑢𝑆 =
𝑃𝑥
𝑘𝑥
+
𝑃𝑥 ∙ �̅�𝐶𝐺 − 𝑃𝑦 ∙ �̅�𝐶𝐺

𝑘𝜔
�̅�𝑆 

Similarly for the total vertical disposition of S is: 

𝑣𝑆 =
𝑃𝑦

𝑘𝑦
+ �̅�𝑆 · 𝜔 
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or  

𝑣𝑆 =
𝑃𝑦

𝑘𝑦
+
𝑃𝑥 ∙ �̅�𝐶𝐺 − 𝑃𝑦 ∙ �̅�𝐶𝐺

𝑘𝜔
�̅�𝑆 

Therefore the values of shear forces are: 

Qix = kix·uS      and 

Qiy = kiy·vS. 

Ductility of structures 

From the economic point of view, according to all modern Seismic codes, 

every design of structures, made of any material especially of reinforced concrete, is 

based on their ductility. 

A material is characterized as ductile, if, during its loading, it can resist a high 

level of distortions. For members or structures of reinforced concrete, ductility 

means their ability to be deformed beyond their yield point, without significant 

decrease of their strength.  

A brittle material, like chalk, or even a brittle structure, as soon as the load reaches 

its maximum level, may suddenly fail, without any warning of the coming failure. 

Consequently there is a high risk of collapse in such structures with a loss of lives.  

Typical diagrams of force versus deformation are depicted below for brittle 

and ductile materials. 

 

 The ductility factor 

For the ductile material of the preceding figure, δy is the deformation 

corresponding to the first yield, while δu is the deformation corresponding to the 

maximum force the material can sustain without a decrease of its strength. 
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The force may be a load, moment or stress, while the deformation may be an 

elongation, curvature, or twist. We could give the following definitions: 

a. Ductility: is the absolute value of the marginal deformation δu or the 

inelastic deformation (δu – δy). 

b. Ductility factor:  μ = δu/δy, or some other form, e.g.  φu/φy,  or  θu/θy. It 

is easily calculated and widely used. 

c. The absorbed energy is expressed through the area underneath the 

diagram. 

The above definitions are generally referred to a monotonic loading until 

failure. 

 The significance of ductility 

The following picture illustrates the response of a structure under a seismic 

excitation, for the cases of elastic and inelastic behavior.  

The maximum inertial force of the structure’s response is Pel for the elastic 

structure, while for the elastoplastic (inelastic) structure is Py. The ratio of these 

values, usually called behavior factor, is  q= Pel/Py. 

 

According to the results derived from dynamic analysis of Blume (1961, 1970) 

on systems of Single Degree of Freedom (SDOF), two behaviors have been arisen: 

• responses with equal deformation and 

• responses with equal absorbed energy. 

For the first behavior it holds:  q = μ  (a),   i.e.  Pel/ Py = δu/δy,  while for the 

second 12 −= q (b). A brief proof of this relation is given below: 
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Given the equivalence of the absorbed energies, from the right scheme of the 

above figure, it is:  (OBD) = (OAEF)  or 
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and  finally      12 −= q . 

Comparing equations (a) and (b) with corresponding results of dynamic 

analyses on SDOF systems conducted by Clough in 1966, it has been concluded that 

these equations are close to reality for SDOF systems, but they can proportionally 

approximate multistory buildings. 

The crucial conclusion arising from equations (a) and (b) is that the necessary 

seismic force for an elastoplastic system is only 30% of the corresponding force for 

an elastic, proving therefore the economy of structures. 

Obviously it is not an economical design of a structure to be able to 

undertake a possibly greater earthquake without damage, thus presenting a linearly 

elastic behavior, because the action of a seismic excitation can be received either 

through large forces in the elastic region or through smaller forces in the 

elastoplastic region, provided, in the second case, the system offers this possibility. 
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Therefore the ability of a system for plastic deformation during an 

earthquake is a property of very high significance, as we can design structures for 

much smaller forces than those demanded for elastic systems. 

The greater is the available ductility factor, the larger are the safety margins 

against earthquake. 

The elastoplastic behavior of a building can be ensured through an 

appropriate configuration of the bearing structure, such as the demand of having 

“strong columns and weak girders”, along with a proper arming of the structural 

elements. 

The design cost without damage is dependant to: 

• the significance of structure 

• the type of structure, as, a yielding on statically indeterminate elements, results 

in a redistribution of internal forces to the adjacent members. 

• the possibility of an earthquake event. 

Behavior criteria of ordinary structures 

The most modern codes apply the following criteria relating to structures’ behavior: 

• Weak earthquakes: structures without any damage, within the elastic region of 

stresses, where Hook’s law holds. 

• Intermediate earthquakes: structures with a minimal damage on bearing and 

some damage on non-bearing elements. 

• Strong earthquakes (earthquakes of design): structures with a limited, reparable 

damage on bearing elements, but a fairly small possibility of collapse. 

In the case of a seismic event having the magnitude of design, the collapse 

can be avoided if the members along the joints of structure have been properly 

designed to undertake large elastoplastic deformations without a significant 

decrease of their strength, in other words if they are ductile. 

The Greek seismic codes present the procedure of design i.e. calculations, 

structural and reinforcement details, so that a structure should ensure a satisfactory 

degree of ductility, without having to calculate the demanding or available ductility. 

Besides, the codes aim at the following points: 

• Damage should occur at non-bearing elements, thus ensuring “strong columns – 

weak girders”. 
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• Brittle failures from shear or anchoring should always follow the ductile flexural 

failures, i.e. it is necessary an application of capacity design. 

• Finally to ensure ductility, accompanied by concrete and steel strength, a tensile 

and compression percentage of reinforcement along with tightening. 

Any unexpected override of loads, shocks, temperature changes, foundation 

slides etc., which are usually ignored during design, may be undertaken by the 

ductility of the structure. 

The ability of structure to present a ductile behavior, is expressed through 

the behavior factor, q.  

Structural elements like slabs, secondary girders i.e. girders that do not seat 

on columns, or joints without concurrent vertical elements, are considered to be 

elements without a serious demand of ductility, regardless of belonging or not to a 

girder or  carrier with or without increased demands of ductility. 

The ductility of reinforced concrete structures is dependent on the ductility 

of their materials, the design of members, joints and their structural reinforcement 

details. 

Methods of seismic analysis in structures 

From the seismic point of view, before designing a structure, an engineer 

must be concentrated on what we call ‘response’ of the building under the 

excitation.  

By this term we mean all the magnitudes of internal forces (bending 

moments, shear and axial forces, stresses etc.) along with deformations 

(displacements, turnings etc.) which arise as a result of the periodic motions of the 

structure’s foundations, which in turn generate accelerations and consequently 

inertial forces on the structure’s members. 

The response during an earthquake is, by nature, dynamic. Therefore the 

dynamic characteristics of the structure, i.e. its natural period and damping are 

crucial for the corresponding calculations. 

In the Greek Seismic code (EAK 2000), two only linear methods of calculating 

the seismic response are incorporated:  the dynamic spectral method and the 

simplified spectral (equivalent static) method.  

The reliability of linear methods is small when  q = 3.5, while it is sufficient in 

cases of q = 1.5  or  q = 1.0. This is one of the reasons the code demands in the first 

case additional special controls (capacity design) of the structure, while in the last 

two, nothing. 
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In the first case, a choice of  q = 3.5,  means that we accept and simultaneously aim 

at the entrance of structure into the inelastic region, which allows for a limit damage 

situation, equivalent to life protection and significant damage without completely 

elimination of collapse. For the two other values of q, permitted by the code, the 

choice of  q = 1.5  denotes a controlled damage of minor extend which is repairable, 

while the choice of  q = 1.0 refers to very limited damage, ready for immediate use. 

The modern codes mainly aim at life protection for only one level of seismic 

risk, the so called ‘designed earthquake’ with a possibility of excess 10% in 50 years 

(which is an average life duration of structures) and a repeat period of 474 years. 

In practice, the engineer as a rule chooses  q = 3.5  without asking the owner 

and without explaining him or her what exactly this choice implies. In these cases, 

the inelastic response of structure is not calculated through a linear inelastic 

analysis, but through an ‘equivalent’ linear elastic analysis with the aid of a properly 

modified (division by q) design spectrum. 

Designing a structure with q = 3.5, means that, during the “designed 

earthquake”, all the expected elastoplastic mechanisms will be activated in order to 

absorb the 71% [= (1 – 1/q)100] of the seismic energy derived from the earthquake. 

If these mechanisms are partially or totally not activated, this means that: 

• the calculation with  q = 3.5  was inconsistent, 

• the yield mechanisms become unreliable, 

• the entrance into the inelastic region is no more under control or  

• the possibility of collapse is far from sufficiently small. 

In other words the elastoplastic mechanisms are the “fuses” of the structure 

and have to function, i.e. to “blow” under the designed earthquake; otherwise the 

whole system “is blown”. 

The simplified spectral method (equivalent static method)  

This is the usually applied method for calculating the seismic response of 

structures. According to the procedure followed, the seismic action is substituted by 

static ‘equivalent’ horizontal forces Fi, where i = 1, 2, … N, is the number of stories. 

The method can generally be applied in a reliable way, only when for the 

structure itself, the following two conditions are satisfied: 

a.The fundamental modal shape of oscillation is mainly transportational, 

i.e. torsional oscillations of structure are limited. This condition aims at excluding 
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those buildings presenting high torsional oscillations during their seismic response. 

In other words buildings that are “torsionally sensitive” are excluded. Nevertheless 

the EAK 2000 extends, through a rational way, the application of this method in such 

structures. 

b. The fundamental modal shape of oscillation is predominant, i.e. the 

higher modal shapes of oscillation barely contribute to the total oscillation of 

structure. This condition means that, from the various modal shapes of structure, we 

pick off the first only, considering that structure is oscillating because of this. 

Consequently if the first modal shape is not predominant, having only a small 

contribution to the total oscillation, the method is not reliable. 

Structures that fulfill the above two conditions are characterized as ordinary. 

The more we get away from these conditions the less reliable gets the method. 

In addition, a structure is ordinary when: 

1. It presents a limited change in both stiffness and mass along its height and 

2. The stories function as a diaphragm, i.e. each one is moved as a whole. This 

function is not guaranteed for longitudinal buildings, or parts of buildings with a ratio 

of their sides greater than 4, or even for buildings presenting empty areas greater 

than 35% of their story’s plan. 

Magnitude of the seismic forces Fi 

The total magnitude of the equivalent horizontal static forces Fi, i.e. the base 

shear force  Vo = Σ(Fi)  of the structure, is calculated through the equation: 

)(d0 TmV = ,   where: 

• m is the total oscillating mass of structure, m = ΣWi/g. For a standard 

construction, the weight for the ith story is stated as Wi = Gi + 0.3Q , where G are 

the dead loads of the story and Q the corresponding live loads, 

• Φd(T) is the value of the design spectral acceleration calculated through equation 

2 of the Greek seismic code and 

• T is the natural period of the structure on the seismic direction.  

The period T is allowed to be calculated through any approximate method of 

mechanics.  

For a rectangular plan of the structure the period can be taken from the 

formula: 
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H

H
HT  ,   where: 

o  H is the total height of the structure 

o  L is the length along the seismic direction and 

o  ρ  is the ratio of the total cross sectional area of walls over the sum of all the 

cross sectional areas (walls + columns) of the structure. 

Distribution of forces Fi along the height of structure 

The base shear force V0 is distributed to each story, following a triangular 

allocation of the first modal shape. 

In ordinary buildings this distribution is stated as follows: 

 


−=

)(
)( 0

ii

ii

Hi
zm

zm
VVF  ,    where: 

• mi is the mass of the ith  story (i = 1, 2, … N) 

• zi is the distance between the ith story and the base and  

• VH  =  0.07·T·V0    0.25·V0  is an additional force acted on the top of the building, 

for T  1 sec. This additional force, for T < 1 sec is taken equal to zero. 

Elastic axis. Direction of equivalent static forces 

The equivalent static forces must be applied on the direction of principal 

axes of the structure. These axes belong to the so called two principal planes, which 

are bending planes, vertical and perpendicular to each other, where the horizontal 

seismic force causes only a transposition of the structure, without twist. 

The section of the two principal planes constitutes the elastic axis of 

structure. The track of the elastic axis on the slab of the story (its section with the 

slab), is the so called elastic center of this building’s story. 

However, contrary to single story and some special cases of buildings, the 

multistory mixed buildings, are comprised of frames and walls; hence they might not 

actually incorporate principal bending planes or an elastic axis. Consequently, in this 

general case, the conditions of applying the equivalent static method are no longer 

in hold. 

To this problem, EAK 2000 provides a solution, introducing the concept of the 

so called imaginary elastic axis for any multistory building. 
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The imaginary elastic axis is a vertical line presenting the following property: 

When the plane of horizontal seismic forces coincides with it, causing in general 

some twists on the stories’ levels, the sum of the squares of the twisting angles 

becomes minimum and hence the seismic forces, eventually cause the least torsional 

strain of structure.  

Of course the twisting of structure is not vanished as in the case of a real 

elastic axis, but it is minimized. 

In other words, the imaginary elastic axis is a vertical line of optimum 

torsional strain of the building, used for this reason in the above method. 

The principal directions are determined with respect to this axis, defining 

thus the directions of the equivalent static forces. 

Eccentricities – radius of distortion/gyration – torsional sensitivity 

Given the elastic axis of a single story building, the following useful 

magnitudes can be defined: 

1. The structural or static eccentricity, e0, which is the distance between the 

center of gravity (CG) and the elastic axis; this distance constitutes an index 

of the building’s symmetry. 

2. The radius of distortion, ρK, with respect to the elastic axis, ρ2
K = Kz/K, 

where: Kz = u/θz,  is  the distortion of structure about the elastic axis, K is the 

stiffness of structure on the corresponding principal plane, u is the 

transposition due to a unity force on the principal direction and θz is the 

twist of the diaphragm for a torsional moment Mz = 1. 

3. The radius of distortion, ρm, with respect to the CG,  ρ2
m = ρ2

K + e2
0. 

4. The radius of the story’s gyration,  r = 0.084(Lx
2 + Ly

2),  for a rectangular plan 

of the story, with sides Lx, Ly. Then, if: 

• ρm > r, it follows that the fundamental modal shape has a predominant 

transpositional character, which implies a small influence of torsion. 

• ρm  r, the fundamental modal shape has a predominant tortional 

character, which implies a significant influence of torsion. In this case, 

the structure is considered to be torsionally sensitive. 

All the above magnitudes are defined in the EAK 2000, for each one of the 

principal (imaginary or not) axes of the stories’ building. 
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Accidental eccentricities – equivalent static eccentricities 

The seismic loads, substantially express the inertial forces that are developed 

from the masses of building’s stories during the oscillation of structure. Therefore 

they should act on the center of gravity (CG) of each story. 

Nevertheless they are not actually applied on the CG, but eccentrically, at 

some distances from the CG, defined from the so called eccentricities, which are: 

1. Accidental eccentricities, ea. They take into account the scattering of mass, 

the elastic and damping properties of the structure, along with any probable 

torsional oscillations of ground, and are defined as: eai = 0.05Li, where Li is the 

breadth of structure perpendicular to the direction of seismic force.  

2. Equivalent static eccentricities, ef, er. They take into account the difference 

(increase or reduction) between the static and dynamic torsional strain of the 

building.  

Due to the static design demanded by the method – in reality the structure is 

strained dynamically – there is a torsional divergence, especially on buildings 

presenting non symmetric columns and walls.  

This divergence is covered by introducing the static loads eccentrically. 

According to EAK 2000, in torsionally sensitive buildings, the above 

equivalent static eccentricities must be calculated in a rather detailed way, while for 

non-sensitive, they are taken from simple approximative formulae (ef = 1.50e0,  er = 

0.50e0). 

Spatial superposition – seismic directions 

The simplified spectral method demands the two horizontal seismic 

components to be parallel to the principal directions of the building. 

Let’s assume that a structure is designed through the equivalent static 

method, initially along the X and then along the Y principal direction. Let us take for 

instance, a girder under bending and axial load, for which the analysis gave: 

• Mx  and   Nx   through a solution on the X-direction, while 

• My  and   Ny   through a solution on the Y-direction. 

The question which arises is: which is the bending moment, Md and the axial 

load, Nd, that will be used for dimensionalising the girder? Obviously a simple sum 

Md = Mx + My    and     Nd = Nx + Ny 
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is not correct because the two seismic excitations are statistically 

independent. The “sum”, i.e. the spatial superposition, has to follow the statistical 

procedure that gives the extreme possible value of an amount, exM and exN, i.e. the 

formula of simple quadratic superposition: 

22

yx MMexM +=
   

and    22

yx NNexN +=
 ·

 

Will the girder be dimensionalised using the above extreme values? 

Obviously not, because these values are possibly maximum or minimum, which, 

however, do not appear simultaneously.  

Rationally, the dimensionalisation will comprise the following 4 couples: 

[± exM,  N]     where     N = (± Mx·Nx + My·Ny)/exM    and 

[± exN,  M]     where     M = (± Mx·Nx + My·Ny)/exN . 

Namely, for dimensionalising a cross section strained by more than one 

internal forces, we have to combine the extreme value of each force, with the 

possible simultaneous – to this extreme force-value – values of the other forces. 

Example 

A three-storey building of ordinary importance, presenting for each storey a 

load of 2500 kN and a height of 4 m, is founded in an area of Seismic Risk Zone I. The 

cross-sectional areas of the vertical elements (columns, walls etc) are depicted in the 

plan of the following figure.  

Calculate the seismic design loads for an earthquake direction y-y. 

Data: Soil class B → θ = 1  and  T1/T2 = 0.15/0.60 

 Behavior Factor q = 3.5 

Solution 

Applying the restrictions coming from the above data we proceed to the 

following calculations: 

Mass of building: 

𝑀 = 
3 ∙ 2500

𝑔
=  
7500 𝑘𝑁

𝑔
 

Natural period of Building: Due to the orthogonal plan of structure we can 

apply the relation: 
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𝑇 = 0.09𝐻√
𝐻

(𝐻 + 𝜌𝐿)𝐿
 

where:  H = 3·4 = 12 m   and   L = Ly = 10 m. 

Along the seismic direction y-y:  Awalls = 0.2·(2·1.5+2·3) = 1.8 m2. 

Totally:  Awalls + Acolumns = 0.2·(4·1.5+3·3) + 0.3·0.3·6 = 3 + 0.54 = 3.54 m2. 

ρ = 1.80/3.54 = 0.51. Therefore 

𝑇 = 0.09 ∙ 12√
12

(12 + 0.51 ∙ 10) ∙ 10
  =  0.29 𝑠𝑒𝑐 

Since  T1< 0.29 < T2 ,  the building is stiff, thus we use equation 2b of the EAK 

code. 

Base shear force: 

𝑉0 = 𝑀 ∙ 𝛷𝑑(𝑇) = 𝑀 ∙ 𝐴 ∙ 𝛾𝛪
𝛽0
𝑞
∙ 𝜃 =

7500

𝑔
∙ 0.16 ∙ 𝑔 ∙ 1

2.5

3.5
∙ 1 = 857.14 𝑘𝑁 

Shear force distribution along height: 

𝐹 = (𝑉0 − 𝑉𝐻)𝑚𝑖 ∙ 𝑧𝑖/∑(𝑚𝑖 ∙ 𝑧𝑖) 
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where  VH = 0  because  T < 1 sec. 

∑(𝑚𝑖 ∙ 𝑧𝑖) =  
2500

𝑔
4 +

2500

𝑔
8 +

2500

𝑔
12 =  

60000

𝑔
 

𝐹1 = 857.14
(2500/𝑔) ∙ 4

60000/𝑔
= 142.86 𝑘𝑁 

𝐹2 = 857.14
(2500/𝑔) ∙ 8

60000/𝑔
= 285.71 𝑘𝑁 

𝐹3 = 857.14
(2500/𝑔) ∙ 12

60000/𝑔
= 428.57 𝑘𝑁 

Each one of the above forces will be applied on the corresponding storey at a 

distance  0.05·Lx = 0.05·13 = 0.65 m from both sides of the centre of gravity (CG). 

This means the existence of a simultaneous torsional moment ± 0.65·Fi kNm, on the 

ith floor. 
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The dynamic spectral method – General concepts 

This method is applied without restrictions to any structure covered by EAK 

2000. However, the reliability of method is getting less in cases concerning buildings 

with high non-symmetries and large variations on mass and stiffness along their 

height and plan. 

It is possible to describe the dynamic response of a structure, through an 

analysis of its oscillation, in “modal oscillations”. 

The number of modal oscillations that a system presents, is, in general, equal 

to the number of its main degrees of freedom. 

The number of degrees of freedom in a system with concentrated masses can 

be determined by the minimum number of independent movements and twists 

made by the masses, so that their position can always be geometrically located. 

For a plane frame, for instance, with concentrated masses on its horizontal 

girders which keep their shape – assumptions realistic for current structures – the 

degrees of freedom are determined by its number of storeys. In this case the 

independent movements are the horizontal displacements of its girders. 

In every modal type, all distinct masses are oscillated “in phase”, meaning 

that they pass from their rest position and maximum displacement in the same 

period of time. 

Every modal oscillation is directly related to its ‘natural or self period’, i.e. the 

time necessary for a complete oscillation. The greatest natural period for any system 

corresponds to its first “fundamental mode”. 

The majority of the building responses is calculated by composing some of 

the first modal shapes. Nevertheless, for high buildings with a framed bearing 

system, it has been concluded that the first fundamental mode contributes about 

80% to the total response, while the second and third modes, about 15%. 

The next figure depicts the three first modal shapes (c,d,e) of a multistory 

building. 

The curves intersect the vertical axis of each mode in a number of points 

(points of contraflexure, where the base point is concluded), that express the modal 

order. 

The displacements of each mode are relevant without expressing a specific 

amount. The vectors Φi that define each modal shape are: 
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The maximum relevant displacement is 1, keeping the modal shape ratio 

constant. 

 

(a) Static model, (b) dynamic model, (c), (d), (e) 1st, 2nd, 3rd modal shapes 

Free oscillation of n-degree of freedom system without damping 

A multi-storey framed structure presenting n floors and therefore n degrees 

of freedom is illustrated below.  

 

A multi storey frame 
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It has to be noted that kj is the total stiffness of columns connecting the level 

j with the corresponding lower one.  

In the lack of damping, the mathematical expression of the dynamic 

equilibrium in a matrix form is: 

𝑴�̈� +  𝑲𝑼 = [𝟎] 

where the parameters involved in the above equation, i.e. the Displacement 

vector, the Mass and the Stiffness matrix  are determined in a matrix form as 

follows: 

Displacement vector 

𝑈 =  

[
 
 
 
 
 
𝑢1
𝑢2
𝑢3
∙

𝑢𝑛−1
𝑢𝑛 ]

 
 
 
 
 

 

Mass matrix 

𝑀 = 

[
 
 
 
 
 
𝑚1     0       0     ∙      0      0  
 0      𝑚2     0     ∙      0      0
 0       0      𝑚3    ∙      0      0
   ∙         ∙        ∙       ∙       ∙       ∙   
  0       0       0      ∙   𝑚𝑛−1 0 
    0       0       0      ∙      0     𝑚𝑛]

 
 
 
 
 

 

Stiffness matrix 

𝐾 =  

[
 
 
 
 
 
𝑘1 + 𝑘2 −𝑘2 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3
0 −𝑘3 𝑘3 + 𝑘4
∙        ∙       ∙
0            0            0
0         0         0

     ∙        0              0   
     ∙        0              0   
     ∙        0               0    
    ∙   ∙         ∙  
    ∙ 𝑘𝑛−1 + 𝑘𝑛   −𝑘𝑛
    ∙   −𝑘𝑛        𝑘𝑛 ]

 
 
 
 
 

 . 

Taking into account the contents of the above matrices, if we develop the 

products arising from the initial equation and do the necessary mathematical 

procedure, the following system of n equations yields, expressing the dynamic 

equilibrium for each mass (1 to n) separately: 

𝑚1�̈�1 + 𝑘2(𝑢1 − 𝑢2)  +  𝑘1𝑢1  =  0 

𝑚2�̈�2 + 𝑘3(𝑢2 − 𝑢3)  +  𝑘2(𝑢2 − 𝑢1)  =  0 

𝑚3�̈�3 + 𝑘4(𝑢3 − 𝑢4)  +  𝑘3(𝑢3 − 𝑢2)  =  0 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

𝑚𝑛−1�̈�𝑛−1 + 𝑘𝑛(𝑢𝑛−1 − 𝑢𝑛)  +  𝑘𝑛−1(𝑢𝑛−1 − 𝑢𝑛−2)  =  0 

𝑚𝑛�̈�𝑛 + 𝑘𝑛(𝑢𝑛 − 𝑢𝑛−1)  =  0 . 

It can be proved that in the above n-degree-of-freedom-system there are n 

natural frequencies ωj, that correspond to n modal shapes Φj, where j = 1, 2, … n and 

�̈�𝑗 = −𝜔𝑗
2𝛷𝑗  . 

Substituting this value of acceleration above, for a 2-degree-of-freedom-

system, the yielding equation, K∙Φ – ω2Μ∙Φ = 0, holds only if its determinant is zero, 

i.e. 

|𝑲 − 𝜔2𝑴| = 0    →     |
𝑘1 + 𝑘2 − 𝜔

2𝑚1 −𝑘2
−𝑘2 𝑘2 − 𝜔

2𝑚2

| = 0     → 

→     𝜔4𝑚1𝑚2 − 𝜔
2[(𝑘1 + 𝑘2)𝑚2 + 𝑘2𝑚1] + 𝑘1𝑘2  =   0 . 

Putting ω2 = λ, we form a trinomial with two solutions, λ1 = ω1
2 and λ2 = ω2

2, 

from which the normal frequencies and periods of the system are obtained.  

Steps of procedure 

Before calculations, the following steps describe the procedure to be 

followed. 

1. Number of modal shapes: 

A number of modal shapes (eigen modes), i, will be taken into account, until 

the sum of the acting modal masses ΣMi reaches the 90% of the total oscillating 

mass of the system. 

2. Orientation of seismic action 

While in the Simplified Spectral or Equivalent Static Method the directions of 

horizontal seismic components had to be considered parallel to the (real or unreal) 

main directions of building, in the Dynamic method the two horizontal seismic 

components may have any direction. In other words the response of structure is 

independent to the orientation of these components. This means that: 

• The two horizontal and perpendicular to each other components act 

simultaneously, 

• They considered statistically non-associative, and 

• The response spectra for the two horizontal directions are equivalent. 
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As a result of the above, the bending moment of a girder maintains the same 

value, independently of the seismic excitation’s orientation and its maximum, or 

extreme value should be statistically calculated, i.e. by the sum of the two 

component contributions. 

3. Eccentricity 

While in the Simplified Static Method the equivalent static eccentricities had 

to be taken into account, in the Dynamic method there is no need for this, once 

possible non symmetries in the structure’s plan are automatically considered. 

However, the accidental eccentricities, referred in the previous method, remain.  

In practice, the mass mi of each floor, is taken moved from both sides of the 

centre of gravity at a distance equal to the accidental eccentricity eai of the 

respective storey.  

In other words the system is solved 4 times for the 2 simultaneous components. 

4. Modal analysis 

Then follows the estimation of modal shapes, along with the natural periods 

T1, T2, T3, … for each mode. 

5. Use of design spectrum 

From the design spectrum, and the previously estimated natural periods (T1, 

T2, T3…), the maximum design acceleration (Sα1, Sα2, Sα3…) for each modal shape is 

determined. 

6. Forces of Inertia 

For each modal shape, the imaginary portions of masses mi that participate 

in this mode is estimated, yielding, according to the following procedure, the values 

of excitation’s coefficients, Li, and the generalized (modal) masses, Mi.  

Then, using these values, through the following typical formulae, the 

maximum forces-of-inertia Pi,j (i=floor, j=mode) are calculated: 

1st Mode     

{
 
 
 

 
 
 
𝐿1 = 𝑚1 ∙ 𝜑1,1 +𝑚2 ∙ 𝜑2,1 +𝑚3 ∙ 𝜑3,1
𝑀1 = 𝑚1 ∙ 𝜑1,1

2 +𝑚2 ∙ 𝜑2,1
2 +𝑚3 ∙ 𝜑3,1

2

𝑃1,1 = 𝑚1 ∙ 𝜑1,1
𝐿1

𝑀1
𝑆𝑎1

𝑃2,1 = 𝑚2 ∙ 𝜑2,1
𝐿1

𝑀1
𝑆𝑎1

𝑃3,1 = 𝑚3 ∙ 𝜑3,1
𝐿1

𝑀1
𝑆𝑎1
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2nd Mode     

{
 
 
 

 
 
 
𝐿2 = 𝑚1 ∙ 𝜑1,2 +𝑚2 ∙ 𝜑2,2 +𝑚3 ∙ 𝜑3,2
𝑀2 = 𝑚1 ∙ 𝜑1,2

2 +𝑚2 ∙ 𝜑2,2
2 +𝑚3 ∙ 𝜑3,2

2

𝑃1,2 = 𝑚1 ∙ 𝜑1,2
𝐿2

𝑀2
𝑆𝑎2

𝑃2,2 = 𝑚2 ∙ 𝜑2,2
𝐿2

𝑀2
𝑆𝑎2

𝑃3,2 = 𝑚3 ∙ 𝜑3,2
𝐿2

𝑀2
𝑆𝑎2

 

3rd Mode     

{
 
 
 

 
 
 
𝐿3 = 𝑚1 ∙ 𝜑1,3 +𝑚2 ∙ 𝜑2,3 +𝑚3 ∙ 𝜑3,3
𝑀3 = 𝑚1 ∙ 𝜑1,3

2 +𝑚2 ∙ 𝜑2,3
2 +𝑚3 ∙ 𝜑3,3

2

𝑃1,3 = 𝑚1 ∙ 𝜑1,3
𝐿3

𝑀3
𝑆𝑎3

𝑃2,3 = 𝑚2 ∙ 𝜑2,3
𝐿3

𝑀3
𝑆𝑎3

𝑃3,3 = 𝑚3 ∙ 𝜑3,3
𝐿3

𝑀3
𝑆𝑎3

 

7. Extreme modular response 

For the maximum modal forces of inertia, the corresponding maximum 

response magnitudes (bending moments, shear forces, displacements etc) of each 

mode are calculated. 

8. Modal superposition 

All the above modal quantities are superposed by means of the Square Root 

of the Sum of Squares (SRSS), i.e. 

𝐴𝑠 = √𝐴𝑠,1
2 + 𝐴𝑠,2

2 + 𝐴𝑠,3
2  

where:   As is a response magnitude, say, bending moment, located at s, As,i is 

the maximum value of the above magnitude at the same location for the ith mode. 

This way of superposition is justified on the view that the maximum value of 

each modal magnitude is not realised simultaneously for all modes. Therefore, based 

on the theory of probabilities, the most realistic maximum value may be represented 

by the Square Root of the Sum of Squares. 

9. Spatial superposition 

On this step, an appropriate superposition of the maximum seismic response 

for a simultaneous action of all 3 components (2 horizontal + 1 vertical, which is 

usually ignored), is realised. 
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Therefore for a magnitude As, the maximum responses Asx, Asy, Asz are not 

developed simultaneously and hence, the maximum value of As can be given either 

through: 

𝐴𝑠 = ±√𝐴𝑠𝑥2 + 𝐴𝑠𝑦2 + 𝐴𝑠𝑧2  ,     or 

the absolutely maximum value from the following three: 

𝐴𝑠 = ± 𝐴𝑠𝑥 ± 0.3 𝐴𝑠𝑦 ± 0.3 𝐴𝑠𝑧 

𝐴𝑠 = ± 0.3𝐴𝑠𝑥  ±  𝐴𝑠𝑦 ± 0.3 𝐴𝑠𝑧 

𝐴𝑠 = ±0.3𝐴𝑠𝑥 ± 0.3 𝐴𝑠𝑦 ±  𝐴𝑠𝑧 

When the vertical component is ignored, the absolutely maximum value from 

the following two is considered: 

𝐴𝑠 = ± 𝐴𝑠𝑥 ± 0.3 𝐴𝑠𝑦 

𝐴𝑠 = ± 0.3𝐴𝑠𝑥  ±  𝐴𝑠𝑦 

10. Combinations of cross-sectional dimensions 

Aiming at a cross-sectional determination, i.e. dimensioning any structural 

element, EAK 2000 allows the most conservative combination (there are too many), 

for the magnitude(s) As, yielding from the above spatial superposition. 

Example 

For the framed structure of the following figure, calculate its seismic 

response, using the dynamic method along with its corresponding spectrum.  

 

Data:                                           E = 2.1·107kN/m2,  
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𝐽 =  
0.4∙0.63

12
= 7.2 ∙ 10−3𝑚4 , 

𝐾 = 
2∙12𝐸𝐽

ℎ3
= 

24∙2.1∙107∙7.2∙10−3

43
= 56700 𝑘𝑁/𝑚 . 

Solution 

a. Mass matrix 

Since the frame is planar with a girder of infinite stiffness, the masses can be 

considered concentrated on the girder’s C.G. It is: 

𝑚1 = 𝑚2 = 
𝑞 ∙ 𝑙

𝑔
=  
50 ∙ 10

10
= 50 𝑘𝑁/(𝑚/𝑠𝑒𝑐2) 

Therefore the mass matrix is: 

𝑀 = [
𝑚1 0
0 𝑚2

]  =   [
50 0
0 50

] . 

b. Stiffness matrix 

There are two degrees of freedom, i.e. as many as the number of storeys. The 

two independent horizontal displacements of the storeys are u1 and u2. 

The stiffness matrix of the frame, i.e. the force K, necessary to cause u = 1 on 

it, is: 

𝐾 = [
𝐾11 𝐾12
𝐾21 𝐾22

] 

where  Kij is the necessary stiffness at the place level i (where the force is 

acting), to withstand a unit displacement realised at the place level j.  
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The shear forces, V, developed above and/or below the ith level, 

corresponding to Kij, are given below, making use of the deformed frame (see 

previous figure). 

It has to be noted here that stiffness -K21 and -K12 are negative, because, 

trying to keep the rest of the frame in place, their direction is opposite to the applied 

unity of displacement. Therefore: 

For u1 = 1 on the first floor, it is:    K21 = -2V    and     K11 = 4V   while 

For u1 = 1 on the second floor, it is:  K22 = 2V     and     K12 = -2V , where:  

𝑉 =  
12𝐸𝐽

ℎ3
 ∙ 1 =   2.835 ∙ 104 𝑘𝑁 

The above four values of stiffness, constitute the elements of the stiffness 

matrix of this structure and confirm the general case presented at the beginning of 

this chapter. Finally it is: 

𝐾 =  2.835 ∙ 104 ∙ 2 [
2 −1
−1 1

]  =   [2 ∙ 5.67 ∙ 10
4 −5.67 ∙ 104

−5.67 ∙ 104 5.67 ∙ 104
] 

c. Dynamic characteristics 

 Natural frequencies equation 

On the system there are two modal shapes, like the number of degrees of 

freedom. 

In order that the system  K∙Φ – ω2Μ∙Φ = 0,  has two non-zero solutions, apart 

from the obvious solution φi = 0, its determinant has to be zero. Namely, 

|𝑲 − 𝜔2𝑴| = 0    →     |2 ∙ 5.67 ∙ 10
4 − 𝜔250 −5.67 ∙ 104

−5.67 ∙ 104 5.67 ∙ 104 − 𝜔250
| = 0     → 

(2 ∙ 5.67 ∙ 104 − 𝜔250) ∙ (5.67 ∙ 104 − 𝜔250) − (5.67 ∙ 104)2  =   0    → 

2 ∙ 5.67 ∙ 106 −  5 ∙ 2 ∙ 5.67 ∙ 103𝜔2 − 5 ∙ 5.67 ∙ 103𝜔2 + 𝜔4 ∙ 52 −  5.67 ∙ 106 = 0 . 

Putting already   ω2 = λ ,  the previous equation takes the form 

25𝜆2 −  85.05 ∙ 103𝜆 +  32.15 ∙ 106   =   0 

𝜆1,2 = 
85.05 ∙ 103  ± 63.39 ∙ 103

50
=  {

2.968 ∙ 103 = 𝜆2
0.433 ∙ 103 =  𝜆1

 

The two natural frequencies are therefore: 

𝝎𝟏 = √𝜆1 = 𝟐𝟎. 𝟖𝟏 𝒓𝒂𝒅/𝒔𝒆𝒄       and 
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𝝎𝟐 = √𝜆2 = 𝟓𝟒. 𝟒𝟖 𝒓𝒂𝒅/𝒔𝒆𝒄 . 

Natural periods 

The natural periods yield from the corresponding frequencies through the 

basic equation Ti = 2π/ωi. 

𝑻𝟏 = 
2𝜋

𝜔1
 =   

2∙3.14

20.81
 =   𝟎. 𝟑𝟎𝟐 𝒔𝒆𝒄       and 

𝑻𝟐 = 
2𝜋

𝜔2
 =   

2∙3.14

54.48
 =   𝟎. 𝟏𝟏𝟓 𝒔𝒆𝒄 . 

Modal shapes 

For each value of ωi, (or Ti) the homogeneous system K∙Φ – ω2Μ∙Φ = 0 

presents i linearly independent solutions, i.e. natural vectors or modal shapes Φi. 

Every vector univocally determines a simple infinity of homologous 

displacements, i.e. a shape of the structure’s deformation (mode), called modal 

shape. 

The characteristic equation for calculating the modal shapes is: 

[𝑲 − 𝜔2𝑴] ∙ [𝝋𝒊] =  [𝟎] . 

First modal shape ω = ω1 

[
2 ∙ 5.67 ∙ 104 −𝜔1

250 −5.67 ∙ 104

−5.67 ∙ 104 5.67 ∙ 104 − 𝜔1
250

] ∙ [
𝜑11
𝜑21

] = 0 

(2 ∙ 5.67 ∙ 103 − 𝜔1
25) ∙ 𝜑11 −  5.67 ∙ 10

3 ∙ 𝜑21 = 0     (1𝑎) 

−5.67 ∙ 103 ∙ 𝜑11 + (5.67 ∙ 10
3 − 𝜔1

25) ∙ 𝜑21 = 0      (2𝑎) 

In equation (1α), if we put the already calculated value  ω1
2 = 0.433∙103  along 

with   𝝋𝟏𝟏 = 𝟏,  then, the value for  𝝋𝟐𝟏will be obtained. 

2 ∙ 5.67 ∙ 103 − 0.433 ∙ 103 ∙ 5 −  5.67 ∙ 103 ∙ 𝜑21 = 0      → 

𝝋𝟐𝟏 = 
2 ∙ 5.67 − 5 ∙ 0.433

5.67
=  
11.34 − 2.165

5.67
= 𝟏. 𝟔𝟏𝟖 

The vector for the first modal shape is therefore:    

𝝋𝟏 = [𝜑11     𝜑21] =  [𝟏     𝟏. 𝟔𝟏𝟖] . 

Second modal shape ω = ω2 

[
2 ∙ 5.67 ∙ 104 −𝜔2

250 −5.67 ∙ 104

−5.67 ∙ 104 5.67 ∙ 104 − 𝜔2
250

] ∙ [
𝜑12
𝜑22

] = 0 
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(2 ∙ 5.67 ∙ 103 − 𝜔2
25) ∙ 𝜑12 −  5.67 ∙ 10

3 ∙ 𝜑22 = 0     (1𝑏) 

−5.67 ∙ 103 ∙ 𝜑12 + (5.67 ∙ 10
3 − 𝜔2

25) ∙ 𝜑22 = 0      (2𝑏) 

Similarly, in equation (1b), if we put the already calculated value  ω2
2 = 

2.968∙103  along with   𝝋𝟏𝟐 = 𝟏,  then, the value for  𝝋𝟐𝟐will be obtained. 

2 ∙ 5.67 ∙ 103 − 2.968 ∙ 103 ∙ 5 −  5.67 ∙ 103 ∙ 𝜑22 = 0      → 

𝝋𝟐𝟐 = 
2 ∙ 5.67 − 5 ∙ 2.968

5.67
=  
11.34 − 14.84

5.67
= −𝟎. 𝟔𝟏𝟕 

The vector for the second modal shape is therefore: 

𝝋𝟐 = [𝜑11     𝜑21] =  [𝟏   − 𝟎. 𝟔𝟏𝟕]. 

 

Generalized masses 

Each generalized mass Mi, plays the role of a “mass” at the ith natural 

oscillation of the system. For the two floors, we have: 

𝑀1 = 𝑚1𝜑11
2 + 𝑚2𝜑21

2 = 50 ∙ 12 +  50 ∙ 1.6182 = 180.9 

𝑀2 = 𝑚1𝜑12
2 + 𝑚2𝜑22

2 = 50 ∙ 12 +  50 ∙ 0.6172 = 69.03 

Excitation factors 

These are intermediate magnitudes helping to calculating the horizontal 

forces for each level. 

𝐿1 = 𝑚1𝜑11 + 𝑚2𝜑21 = 50 ∙ 1 + 50 ∙ 1.618 = 130.9 

𝐿2 = 𝑚1𝜑12 + 𝑚2𝜑22 = 50 ∙ 1 − 50 ∙ 0.617 = 19.15 
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Participation factors 

The participation factors, vi, are largely decreased by the increase of i.  

In general, their value is:   vi = Li/Mi . 

𝑣1 = 
𝐿1
𝑀1

= 
130.9

180.9
=  0.724 

𝑣2 = 
𝐿2
𝑀2

= 
19.15

69.03
=  0.277 

Check:  v1 + v2 = 1.00 

Acting modal masses 

The acting modal mass, Mai, is, for each modal shape, a quantitative criterion 

of the maximum energy of deformation and constitutes an index of its significance. 

In practice it yields the number of significant modal shapes to be taken into 

account, ignoring all the others. The sum of all the acting modal masses has a 

constant value, Ms. 

In general, the value of the ith modal mass, Mai, is:  Mai = vi
2·Mi = Li

2/Mi. 

𝑀𝑎1 = 
𝐿1
2

𝑀1
= 
130.92

180.9
= 94.7 

𝑀𝑎2 = 
𝐿2
2

𝑀2
= 
19.152

69.03
= 5.3 

Check:  Ms = Ma1 + Ma2 = 100 

Modal shapes participation 

The non dimensional ratios ei = Mai/Ms, where  Σei = 1,  constitute a measure 

of energy comparison for all the modal shapes. The acting mass, Mai, represents the 

percentage of the total mass, which is activated at the ith modal shape. It is: 

𝑒1 = 
𝑀𝑎1

𝑀𝑠
=  
94.7

100
= 94.7 % 

𝑒2 = 
𝑀𝑎2

𝑀𝑠
=  

5.3

100
= 5.3 % 
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Modal seismic forces 

On the total activated mass Ms we can correspond an activating horizontal 

seismic force P, which is the resultant of the seismic forces of all the floors.  

This resultant is usually called the base shear force. 

The contribution of each modal shape to the formation of each floor’s 

horizontal seismic force is: 

First modal shape, i = 1 

Making use of the given spectrum, for the already calculated natural period 

T1 = 0.302 sec of the first modal shape, since T1 > 0.3 sec, the corresponding spectral 

acceleration, Sa1, is: 

𝑆𝑎1
𝑔
= 
0.085

√𝑇1
3

   →      𝑆𝑎1 = 
0.085 ∙ 𝑔

√0.302
3 = 1.27 𝑚/𝑠𝑒𝑐2 

Modal acceleration; 

𝛾1 = 𝑣1𝜑1𝑆𝑎1 = 0.724 [
1

1.618
] 1.27 =  [

0.919
1.49

] 

Modal horizontal seismic force: 

𝑷𝟏 = 𝑀 ∙ 𝛾1 = [
50 0
0 50

] ∙ [
0.919
1.49

] =  [
50 ∙ 0.919 + 0 ∙ 1.49
0 ∙ 0.919 + 50 ∙ 1.49

] =  [
𝟒𝟔
𝟕𝟒, 𝟓

] 

Second modal shape, i = 2 

Again, making use of the given spectrum, for the already calculated natural 

period T2 = 0.115 sec of the second modal shape, since T2 < 0.3 sec, the 

corresponding spectral acceleration, Sa2, is constant: 

𝑆𝑎2
𝑔
=  0.127   →      𝑆𝑎2  =  1.27 𝑚/𝑠𝑒𝑐

2 

Modal acceleration; 

𝛾2 = 𝑣2𝜑2𝑆𝑎2 = 0.276 [
1

−0.617
] 1.27 =  [

0.35
−0.22

] 

Modal horizontal seismic force: 

𝑷𝟐 = 𝑀 ∙ 𝛾2 =  [
50 0
0 50

] ∙ [
0.35
−0.22

] =  [
50 ∙ 0.35 + 0 ∙ (−0.22)

0 ∙ 0.35 + 50 ∙ (−0.22)
] =  [

𝟏𝟕. 𝟓
−𝟏𝟏. 𝟎

] 
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Modal shear force diagrams 

 

Shear forces and bending moments of columns 

The base shear force is:   Vb = 74.5 + 46 = 120.5 kN,  which is equally 

distributed to each one of the columns. 

The modal contribution to shear forces and bending moments is therefore: 

𝟏𝒔𝒕 𝑴𝒐𝒅𝒆:    𝑽𝒂 =  
120.5

2
= 𝟔𝟎. 𝟐𝟓 𝒌𝑵,     𝑴𝒂 = 𝑉𝑎 ∙

ℎ

2
= 60.25 ∙

4

2
= 𝟏𝟐𝟎. 𝟓 𝒌𝑵𝒎 

𝟐𝒏𝒅 𝑴𝒐𝒅𝒆:    𝑽𝒂 = 
6.5

2
= 𝟑. 𝟐𝟓 𝒌𝑵,      𝑴𝒂 = 𝑉𝑎 ∙

ℎ

2
= 3.25 ∙

4

2
= 𝟔. 𝟓 𝒌𝑵𝒎 

Modal superposition 

𝒎𝒂𝒙𝑽𝒂 = √𝑉𝑎1
2 + 𝑉𝑎2

2 = √60.252 + 3.252 = 𝟔𝟎. 𝟑𝟒 𝒌𝑵 

𝒎𝒂𝒙𝑴𝒂 = √𝑀𝑎1
2 +𝑀𝑎2

2 = √120.52 + 6.52 = 𝟏𝟐𝟎. 𝟔𝟔 𝒌𝑵 
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Capacity design of joints (between beams and columns) 

As a procedure, the capacity design aims at providing the structure the 

maximum possible absorption of energy without a partial or total collapse. 

A basic principal of earthquake design of joints, is, that during a very strong 

seismic event, the first elements to fail must be exclusively beams, followed by a 

possible failure of columns. 

This principal can be ensured by designing frames with “strong columns and weak 

beams”; this is quantified by a demand, stating that the sum of the column’s flexural 

capacity under the simultaneous action of compressional load, should be greater 

than the sum of the corresponding beams’ flexural capacity. The term flexural 

capacity is here equivalent to the bending moment when first yield is initiating.  

 

Following the figure’s configuration and applying the above principal, it must 

be: 

|𝑀𝑅𝑐
𝑜 | + |𝑀𝑅𝑐

𝑢 | ≥ 𝛾𝑅𝑑 ∙ (|𝑀𝑅𝑏
𝑙−| + |𝑀𝑅𝑏

𝑟+|)       and 

|𝑀𝑅𝑐
𝑜 | + |𝑀𝑅𝑐

𝑢 | ≥ 𝛾𝑅𝑑 ∙ (|𝑀𝑅𝑏
𝑙+| + |𝑀𝑅𝑏

𝑟−|) 

or         𝛴|𝑀𝑅𝑐| ≥ 𝛾𝑅𝑑 ∙ 𝛴|𝑀𝑅𝑏|,       where  γRd = 1.40 

The dimensioning of columns will appear after applying the design moments, 

which must yield from the following procedure: 

1. For each seismic direction we apply on the ends of the joint opposite 

moments in order to form the following mechanisms: 
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2. The failure moments are calculated from the existing real reinforcement of 

beams at both ends of the joint. Of course the dimensioning of all the beams 

gathered on the joint has been preceded. 

3. The joint capacity magnification factor, αCD, is calculated through the relation: 

𝑎𝐶𝐷 = 𝛾𝑅𝑑 ∙
𝛴𝑀𝑅𝑏

|𝛴𝛭𝛦𝑏|
  ,         where       γRD = 1.40      and 

 ΣMRb is the sum of the beams’ flexural capacity gathered on the joint, as a 

result of the column’s bending moment, MEC, yielding from seismic analysis 

and following the corresponding seismic direction to generate MEC and 

ΣMEb is the sum of the beams’ seismic moments derived from the analysis, 

following always the same corresponding seismic direction. 

4. The flexural capacity of the column, MCD,c , is now derived from the column’s 

seismic moment, MEc, through the relation 

𝑀𝐶𝐷,𝑐 = 𝑎𝐶𝐷 ∙ 𝑀𝐸𝑐  . 

The seismic moment, MEc,  as highlighted before, yields through the analysis. 

5. At joints where the bending moment of the overhead vertical element, MEC,1 

is greater than the sum of moments derived from the beams, namely 

|𝑀𝐸𝐶,1|  >  |𝛴𝑀𝐸𝑏| , 

the flexural capacity is obtained from the relation MCD,C = 1.40∙MEC ≥ MSC, 

where MSC is the moment yielding from the seismic combination. 

The coefficient αCD should not be taken greater than the behavior 

factor, q, used to determine the seismic action; i.e. αcd ≤ q . 

6. The flexural capacity can be avoided in the following cases: 

a) Columns of a single-storey building 

b) Columns belonging to double-storey buildings that present a normal plan 

c) Columns belonging to the upper floor of a multi-storey-building. 

Example 

A framed structure has been designed according to Greek seismic code EAK 

2000 for a behavior factor q = 3.5. From the seismic analysis carried out for an 

internal joint, the derived bending moments are depicted on figure (a). 

Initially the beams were dimensionalized, and, according to the reinforcement 

placed to them, the capacity moments, shown in figure (b), were calculated 

according to the seismic direction yielding from the moment action of the column. 
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Calculate the moments through which the columns K1 and K2 will be 

dimensionalized, according to the capacity design procedure. 

 

Data:  1)  γRd = 1.40 

2) Bending moments at the beam ends from non-seismic-loads (dead 

and live):   MB1 = MB2 = - 200 kNm. 

Solution 

Since the capacity moments of beams (fig. b) are equal and symmetric, the 

seismic direction does not play any role. However, according to the seismic 

directions of bending moments shown in figure (a), the sum of the beams’ flexural 

capacity, ΣMRb and the corresponding sum of the beams’ seismic moments, ΣMEb , is 

respectively: 

ΣMRb = 500 + 250 = 750 kNm 

ΣMEb = 240 + 210 = 450 kNm 

Indeed, due to the rightwards rotation of the joint from columns, for each 

one of the beams B1 and B2, we keep, of fig. (b), only the capacity moments that 

resist the corresponding seismic moments of columns at (a), i.e. 500 for B1 and 250 

for B2. 

The joint capacity magnification factor, αCD, is therefore: 

𝑎𝐶𝐷  =   𝛾𝑅𝑑 ∙
𝛴𝑀𝑅𝑏

|𝛴𝛭𝛦𝑏|
 =  1.40 ∙

750

450
 =  2.33   <   3.50 =   𝑞 

and consequently the bending moments through which the columns K1 and K2 will 

be dimensionalized are: 

For column K1, presenting MEc = 250 kNm,   it is:   MCD,c = 2.33·250 = 583.33 kNm   

For column K2, presenting MEc = 200 kNm,   it is:   MCD,c = 2.33·200 = 466.67 kNm   

B.N. The given static beam moments of -200 kNm, do not affect the column’s 

flexural capacity. They are taken into account only in the beams’ dimensionalization. 



 - 82 - 

 

 

Seismic pathology 

A serious seismic event puts all the structures through a hard test. As a result 

all the weaknesses generated in the structure, due to either code imperfections or 

analysis and design errors, or even bad construction are readily apparent. 

This is why strong earthquakes usually lead to improvements or even drastic 

changes to the design codes along with modifications on the design and execution of 

the construction works. 

It is difficult to classify the damage caused by an earthquake. This is due to 

dynamic character of the seismic action and the inelastic response of the structure. 

It is therefore obvious that an earthquake design must be realized by people 

carrying a deep knowledge of the seismic phenomenon along with its parameters 

that affect the response of structures. 

In this section an attempt will be made to a damage classification on 

individual structural elements. A valuable guide to this attempt will be the lessons 

derived from the damages of structures after real earthquakes. 

Damage to columns 

There are two types of damage caused to columns by an earthquake: 

1. damage due to cyclic flexure and low shear under strong axial compression, 

2. damage due to cyclic shear and low flexure under strong axial compression. 

1.The first type of damage comes out with a flexural failure at both the top 

and bottom of the column. It occurs in columns of moderate to high slenderness 

ratio, ie: 

𝑎 =  
𝑀

𝑉ℎ
= 
0.5𝑉𝐿

𝑉ℎ
=  

𝐿

2ℎ
> 3.5 

The combination of high bending moment with axial load at the ends of the 

column, leads to the crushing of the concrete’s compression zone. The smaller the 

number of ties in these areas, the higher their vulnerability to this type of damage. 

The crushing of the compression zone appears initially by spalling off the 

concrete cover to the reinforcement. Then the concrete core expands, causing hoop 

fracture and therefore buckling to the bars in compression. 

The fraction of the ties and the disintegration of the concrete lead to 

shortening of the column under the axial load. This type of damage is very serious 

because the column not only loses its stiffnes; it also loses its ability to carry vertical 

loads. As a result there is a redistribution of stresses in the structure. 
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This is a very common type of damage covering on average one quarter of 

the totally damaged buildings. 

 

Basic reasons for this type of damage are: low quality of concrete, rare 

hoops, strong girders etc. 

2. The second type of damage is of the shear type and appears in the form of 

X–shaped cracks in the weakest zone of the column. It occurs to columns with 

moderate to small slenderness ratio, i.e. 

𝑎 =  
𝑀

𝑉ℎ
= 
0.5𝑉𝐿

𝑉ℎ
=  

𝐿

2ℎ
< 3.5 

For the usual value of  L = 3 m,  it yields that  h > 0.43 m. 

The main reason for this type of damage is that the flexural capacity of the 

column is higher than its shear capacity and therefore shear failure prevails (see next 

figure).  

The frequency of this type of damage is lower than the failure at the top and 

bottom of the column.  
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It usually occurs at columns on the ground floor, where, due to the large 

cross-sectional dimensions of columns, the slenderness ratio is low.  

It also appears in short columns which have either been designed as short, or 

have been reduced to short due to adjacent masonry construction which was not 

accounted for in the design (see figure at the bottom of the page).  

 

For the structure, this type of column damage is very dangerous because it 

alters or even destroys the vertical elements. 
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Sometimes, in the case of one-sided masonry-in-filled frames, masonry 

failure is followed by shear failure of the adjacent columns. 

 

Damage to beams 

In reinforced concrete beams, this type of damage may occur in the following 

way: 

1. cracks perpendicular to the beam axis along the tension zone of the span; 

2. cracks near the supports due to shear failure; 

3. flexural cracks on the upper or lower face of the beam at the supports; 

4. shear or flexural cracks at the points where secondary beams are supported 

by the beam under consideration; 

Although damage to beams, is the most common type of damage in R/C 

buildings – covering approximately one third of the total damages – it does not 

jeopardize the safety of the structure. 

1. Cracks in the tension zone of the span constitute the most common 

damage type, covering approximately four out of five cases of the total beam-

damages. Although the seismic forces do not increase the bending moment in the 

span, the vertical components simply make visible the microcracks due to bending 

on the tension zone, creating thus the impression of earthquake damage. 
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2. The bending-shear failure near supports is the second most frequent type 

of damage (43%) in beams. It is more serious than the previous one. However, only 

in very few cases, does it jeopardize the overall stability of structures. 

 

3. The flexural cracks on the upper and lower face of the beam at the 

supports can be readily explained if we statically consider the horizontal forces. This 

type is rarer than the shear one (28%). In most cases, wide cracking of the lower face 

is due to bad anchorage of the bottom reinforcement into the supports. 

 

4. The shear or flexural failure at points of secondary beams occurs 

frequently due to the vertical component of the earthquake, which, amplifies the 

concentrated load. 

 

Damage to beam-column joints 

This type of damage, is extremely dangerous for the structure, even at the 

early stages of cracking, and has to be carefully treated.  

The reason is that it reduces the stiffness of the structural element, thus 

leading to uncontrollable redistribution of internal forces and stresses. Common 

failures of this type are: 

1. Failure of a corner joint 
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2. Failure of exterior joint in a multi-storey building 

 

3. Failure of a cross-shaped interior joint 
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Damage to slabs 

Common types of damage occurring in slabs are: 

1. Cracks parallel or transverse to the reinforcement at random locations. These 

cracks are the most frequent type of damage.  

They are due to the already existing microcracks – formed usually from 

temperature changes or shrinkage – becoming visible after the seismic excitation. 

Rarely they appear after a differential settlement of columns. 

2. Cracks at critical sections of large spans or cantilevers, transverse to the main 

reinforcement.  

They are due to the vertical component of the earthquake action. 

 

3. Cracks forming at floor discontinuities, like corners of large openings which 

accommodate internal stairways, light shafts etc.  

They are also due to the vertical component of the earthquake action. 
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4. Cracks in areas where large seismic loads are concentrated, especially in a flat 

plate system, where a column is connected to the center of flat. 

This type of damage is related to punching shear failure. From the safety 

point of view this sort of construction is vulnerable to a seismic action and, once it is 

not covered by the codes, it must be avoided. 

 

Damage at a slab to column connection 
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Appendix 

A. What should I do before, during, and after an earthquake 

 

What to do before an erthquake 

Make sure you have a fire extinguisher, first aid kit, a battery-powered radio, a 

flashlight, and extra batteries at home.  

1. Learn first aid.  

2. Learn how to turn off the gas, water, and electricity.  

3. Make up a plan of where to meet your family after an earthquake.  

4. Don't leave heavy objects on shelves (they'll fall during a quake).  

5. Anchor heavy furniture, cupboards, and appliances to the walls or floor.  

6. Learn the earthquake plan at your school or workplace.  

What to do during an Earthquake 

1. Stay calm! If you're indoors, stay inside. If you're outside, stay outside.  

2. If you're indoors, stand against a wall near the center of the building, stand in 

a doorway, or crawl under heavy furniture (a desk or table). Stay away from 

windows and outside doors.  

3. If you're outdoors, stay in the open away from power lines or anything that 

might fall. Stay away from buildings (stuff might fall off the building or the 

building could fall on you).  

4. Don't use matches, candles, or any flame. Broken gas lines and fire don't mix.  

5. If you're in a car, stop the car and stay inside the car until the earthquake 

stops.  

6. Don't use elevators (they'll get stuck anyway).  

What to do after an earthquake 

1. Check yourself and others for injuries. Provide first aid for anyone who needs 

it.  
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2. Check water, gas, and electric lines for damage. If any are damaged, shut off 

the valves. Check for the smell of gas. If you smell it, open all the windows 

and doors, leave immediately, and report it to the authorities (use someone 

else's phone).  

3. Turn on the radio. Don't use the phone unless it's an emergency.  

4. Stay out of damaged buildings.  

5. Be careful around broken glass and debris. Wear boots or sturdy shoes to 

keep from cutting your feet.  

6. Be careful of chimneys (they may fall on you).  

7. Stay away from beaches. Tsunamis and seiches sometimes hit after the 

ground has stopped shaking.  

8. Stay away from damaged areas.  

9. If you're at school or work, follow the emergency plan or the instructions of 

the person in charge.  

10. Expect aftershocks.  
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B. Alphabetical Earthquake Terminology 

 

 

Following are basic terms used in seismology. 

 

 

Aftershock:  

An earthquake that follows a larger earthquake or main shock and originates at or 

near the focus of the larger earthquake. Generally, major earthquakes are followed 

by a larger number of aftershocks, decreasing in frequency with time.  

Amplitude:  

The maximum height of a wave crest or depth of a trough.  

Array:  

An ordered arrangement of seismometers or geophones, the data from which feeds 

into a central receiver.  

Arrival:  

The appearance of seismic energy on a seismic record.  

Arrival time:  

The time at which a particular wave-phase arrives at a detector.  

Aseismic:  

Unassociated with an earthquake.  

Asthenosphere:  

The layer of mantle underlying the lithosphere which is close to its melting point and 

therefore much less rigid than the lithosphere.  

Body wave:  

A seismic wave that travels through the interior of the earth and is not related to a 

boundary surface.  
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Continental Crust:  

Outermost solid layer of the earth that forms the continents and is composed of 

igneous, metamorphic, and sedimentary rocks. Overall, the continental crust is 

broadly granitic in composition. Contrast with oceanic crust.  

Continental Drift:  

The theory, first advanced by Alfred Wegener, that the earth's continents were 

originally one land mass called Pangaea. About 200 million years ago Pangaea split 

off and the pieces migrated (drifted) to form the present-day continents. The 

predecessor of plate tectonics.  

Convergent Plate Boundary:  

See subduction, and subduction zone.  

Crust:  

The outer layer of the earth's surface.  

Dilatancy:  

An increase in the bulk volume of rock during deformation. Possibly related to the 

migration of water into microfractures or pores.  

Divergent Plate Boundary:  

The boundary between two crustal plates that are pulling apart (e.g. sea floor 

spreading).  

Earthquake:  

Shaking of the earth caused by a sudden movement of rock beneath its surface.  

Earthquake swarm:  

A series of minor earthquakes, none of which may be identified as the main shock, 

occurring within a limited area and time.  

Elastic wave:  

A wave that is propagated by some kind of elastic deformation, that is, a 

deformation that disappears when the forces are removed. A seismic wave is a type 

of elastic wave.  
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Epicenter:  

That point on the earth's surface directly above the hypocenter of an earthquake.  

Fault:  

A weak region in the earth's crust where the rock layers have ruptured and slipped.  

First arrival:  

The first recorded signal attributed to seismic wave travel from a known source.  

Focal zone:  

The rupture zone of an earthquake. In the case of a great earthquake, the focal zone 

may extend several hundred kilometers in length.  

Focus:  

That region, considered as a point within the earth, from which originates the first 

motion of an earthquake and its elastic waves.  

Foreshock:  

A small tremor that commonly precedes a larger earthquake or main shock by 

seconds to weeks and that originates at or near the focus of the larger earthquake.  

Harmonic Tremor:  

A continuous release of seismic energy typically associated with the underground 

movement of magma, often preceding volcanic eruptions. It contrasts distinctly with 

the sudden release and rapid decrease of seismic energy associated with the more 

common type of earthquake caused by slippage along a fault.  

Hypocenter:  

The calculated location of the focus of an earthquake.  

Igneous:  

As in igneous rock. A rock formed when magma, or molten rock, cools and solidifies.  

If it cools slowly, the rock will have a coarse crystalline texture.  

If it cools quickly, it will have a fine crystalline texture.  
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If it cools very quickly ("quenched"), it forms a glass, which has no crystalline 

structure. The three main types of rocks are sedimentary, igneous and metamorphic.  

Intensity:  

A measure of the effects of an earthquake at a particular place on humans and/or 

structures. The intensity at a point depends not only upon the strength of the 

earthquake (magnitude) but also upon the distance from the earthquake to the 

epicenter and the local geology at that point.  

Isoseismal line:  

A line connecting points on the earth's surface at which earthquake intensity is the 

same. It is usually a closed curve around the epicenter.  

Leaking mode:  

A surface seismic wave which is imperfectly trapped so that its energy leaks or 

escapes across a layer boundary causing some attenuation.  

Lg Wave:  

A surface wave that travels through the continental crust.  

Liquefaction:  

The process in which a solid (such as soil) takes on the characteristics of a liquid as a 

result of an increase in pore pressure and a reduction in stress. In other words, solid 

ground turns to jelly.  

Lithosphere:  

The rigid crust and uppermost mantle of the earth. Thickness is on the order of 62 

miles (100 kilometers). Stronger than the underlying asthenosphere.  

Love wave:  

A major type of surface wave having a horizontal motion that is shear or transverse 

to the direction of propagation. It is named after A.E.H. Love, the English 

mathematician who discovered it.  

Low-velocity zone:  

Any layer in the earth in which seismic wave velocities are lower than in the layers 

above and below. More commonly the "slow" layer just beneath the lithosphere.  
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Magma:  

Molten rock beneath the surface of the earth. Molten rock erupted at the surface is 

called "lava."  

Magnitude:  

A quantitative measure of the strength of an earthquake.  

Magnitude is calculated from ground motion as measured by seismograph and 

incorporates the distance of the seismograph from the earthquake epicenter so that, 

theoretically, the magnitude calculated for an earthquake would be the same from 

any seismograph station recording that earthquake.  

This is a logarithmic value originally defined by Wadati (1931) and Richter (1935).  

An increase of one unit of magnitude (for example, from 4.6 to 5.6) represents a 10-

fold increase in wave amplitude on a seismogram or approximately a 30-fold 

increase in the energy released. In other words, a magnitude 6.7 earthquake releases 

over 900 times (30 times 30) the energy of a 4.7 earthquake - or it takes about 900 

magnitude 4.7 earthquakes to equal the energy released in a single 6.7 earthquake!  

There is no beginning nor end to this scale. However, rock mechanics seem to 

preclude earthquakes smaller than about -1 or larger than about 9.5. A magnitude -

1.0 event releases about 900 times less energy than a magnitude 1.0 quake.  

Except in special circumstances, earthquakes below magnitude 2.5 are not generally 

felt by humans. See also Richter scale.  

Major earthquake:  

An earthquake having a magnitude of 7 or greater on the Richter scale.  

Mantle:  

The layer of rock that lies between the outer crust and the core of the earth. It is 

approximately 1,802 miles (2,900 kilometers) thick and is the largest of the earth's 

major layers.  

Metamorphic:  

As in metamorphic rock. A rock formed from any other type of rock by elevated 

temperatures and pressures, but which has not undergone complete melting. Two 

common examples of metamorphic rocks are slate (usually formed from shale), and 
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marble (formed from limestone). The three main types of rocks are sedimentary, 

igneous and metamorphic.  

Micro earthquake:  

An earthquake having a magnitude of 2 or less on the Richter scale.  

Microseism:  

A more or less continuous motion in the earth that is unrelated to an earthquake and 

that has a period of 1.0 to 9.0 seconds. It is caused by a variety of natural and 

artificial agents.  

Modified Mercalli Scale:  

Mercalli intensity scale modified for North American conditions. A scale, composed 

of 12 increasing levels of intensity that range from imperceptible shaking to 

catastrophic destruction, designated by Roman numerals. It does not have a 

mathematical basis; instead it is an arbitrary ranking based on observed effects. 

Contrast with Richter scale, a type of magnitude scale.  

Mohorovicic discontinuity:  

The boundary surface or sharp seismic-velocity discontinuity that separates the 

earth's crust from the underlying mantle.  

Oceanic crust:  

The outermost solid layer of Earth that underlies the oceans. Composed of the 

igneous rocks basalt and gabbro, and therefore basaltic in composition. Contrast 

with continental crust.  

P (Primary) wave:  

Also called compressional or longitudinal waves, P waves are the fastest seismic 

waves produced by an earthquake. They oscillate the ground back and forth along 

the direction of wave travel, in much the same way as sound waves, which,(also 

compressional), move the air back and forth as the waves travel from the sound 

source to a sound receiver.  

Pangaea:  

The supercontinent composed of all the present-day continents, which existed about 

200 million years ago. Continental drift refers to the breakup of Pangaea into the 

present configuration of continents.  
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Phase:  

The onset of a displacement or oscillation on a seismogram indicating the arrival of a 

different type of seismic wave.  

Plate:  

Pieces of crust and brittle uppermost mantle, perhaps 100 kilometers thick and 

hundreds or thousands of kilometers wide, that cover the earth's surface. The plates 

move very slowly over, or possibly with, a viscous layer in the mantle at rates of a 

few centimeters per year.  

Plate boundary:  

The place where two or more plates in the earth's crust meet.  

Plate tectonics:  

A widely accepted theory that relates most of the geologic features near the earth's 

surface to the movement and interaction of relatively thin rock plates. The theory 

predicts that most earthquakes occur when plates move past each other.  

Rayleigh wave:  

A type of surface wave having a retrograde, elliptical motion at the earth's surface, 

similar to the waves caused when a stone is dropped into a pond.  

These are the slowest, but often the largest and most destructive, of the wave types 

caused by an earthquake. They are usually felt as a rolling or rocking motion and in 

the case of major earthquakes, can be seen as they approach.  

Named after Lord Rayleigh, the English physicist who predicted its existence.  

Recurrence interval:  

The approximate average length of time between earthquakes in a specific 

seismically active area.  

Richter magnitude scale:  

The system used to measure the strength or magnitude of an earthquake.  

The Richter magnitude scale was developed in 1935 by Charles F. Richter of the 

California Institute of Technology as a collection of mathematical formulas to 

compare the size of earthquakes.  
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A similar scale was developed in 1931 by Wadati, so it is more appropriate to call 

such scales "Wadati-Richter" scales. The magnitude of an earthquake is determined 

from the logarithm of the amplitude of waves recorded by seismographs. 

Adjustments are included for the variation in the distance between the various 

seismographs and the epicenters of the earthquakes.  

On the Richter scale, magnitude is expressed in whole numbers and decimal 

fractions. For example, a magnitude 5.3 might be computed for a moderate 

earthquake, and a strong earthquake might be rated as magnitude 6.3. Because of 

the logarithmic basis of the scale, each whole number increase in magnitude 

represents a tenfold increase in measured amplitude; as an estimate of energy, each 

whole number step in the magnitude scale corresponds to the release of about 30 

times more energy than the amount associated with the preceding whole number 

value.  

Rift system:  

The oceanic ridges formed where tectonic plates are separating and new crust is 

being created; also refers to the on-land counterparts such as the East African Rift.  

Ring of Fire:  

A 40,000 kilometer (24,855 mile) band of seismicity including mountain-building, 

earthquakes, and volcanoes, stretching up the west coasts of South and Central 

America and from the North American continent to the Aleutians, Japan, China, the 

Philippines, Indonesia, and Australasia.  

Rupture zone:  

The area of the earth through which faulting occurred during an earthquake. For 

very small earthquakes, this zone could be the size of a pinhead, but in the case of a 

great earthquake, the rupture zone may extend several hundred kilometers in length 

and tens of kilometers in width.  

S (secondary or shear) wave:  

A seismic body wave that involves particle motion from side to side, perpendicular to 

the direction of wave propagation. S-waves are slower than P-waves and cannot 

travel through a liquid such as water or molten rock.  

Seafloor Spreading:  

The mechanism by which new oceanic crust is created at oceanic ridges and slowly 

spreads away as the plates separate.  
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Sedimentary:  

As in sedimentary rock. A rock made up of sediments, or rock fragments, laid down 

in water or deposited by wind or ice. The fragments can be microscopic, like the 

clays in a shale, or large, like the boulders in a coarse conglomerate. Sandstone, 

shale, and limestone are common sedimentary rocks. About 70% of the earth's crust 

is covered with sedimentary rocks (covering igneous or metamorphic rocks).  

The three main types of rocks are sedimentary, igneous and metamorphic.  

Seiche:  

A free or standing wave oscillation of the surface of water in an enclosed basin that 

is initiated by local atmospheric changes, tidal currents, or earthquakes. Similar to 

water sloshing in a bathtub.  

Seismic:  

Of or having to do with earthquakes.  

Seismic belt:  

An elongated earthquake zone, for example, circum-Pacific, Mediterranean, 

RockyMountain. About 75% of the world's earthquakes occur in the circum-Pacific 

seismic belt.  

Seismic constant:  

In building codes dealing with earthquake hazards, an arbitrarily-set acceleration 

value (in units of gravity) that a building must withstand.  

Seismicity:  

Earthquake activity.  

Seismic sea wave:  

A tsunami generated by an undersea earthquake.  

Seismic zone:  

A region in which earthquakes are known to occur.  

Seismogram:  

A written record of an earthquake, recorded by a seismograph.  
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Seismograph:  

An instrument that records the motions of the earth, especially earthquakes.  

Seismograph station:  

A site at which one or more seismographs are set up and routinely monitored.  

Seismologist:  

A scientist who studies earthquakes.  

Seismology:  

The study of earthquakes and earthquake waves.  

Seismometer:  

The part of a seismograph which actually senses ground motion, ground velocity or 

ground acceleration.  

Strike-slip fault:  

A nearly vertical fault with side-slipping displacement.  

Subduction:  

The process in which one lithospheric plate collides with and is forced down under 

another plate and drawn back into the earth's mantle.  

Subduction zone:  

The zone of convergence of two tectonic plates, one of which is subducted beneath 

the other. An elongated region along which a plate descends relative to another 

plate, for example, the descent of the Nazca plate beneath the South American plate 

along the Peru-Chile Trench.  

Surface waves:  

Waves that move over the surface of the earth.  

Rayleigh and Love waves are surface waves.  

Tectonic:  

Pertaining to the forces involved in the deformation of the earth's crust, or the 

structures or features produced by such deformation.  
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Transform Fault:  

A plate boundary where one plate slides past another; essentially a large strike-slip 

fault.  

Tremor:  

Low amplitude, continuous earthquake activity commonly associated with magma 

movement.  

Tsunami:  

One or a series of great sea waves produced by a submarine earthquake, volcanic 

eruption, or large landslide. (Referred to incorrectly by many as a tidal wave, but 

these waves have nothing to do with tides).  

The word tsunami is Japanese for "harbor wave." 
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