Exercise 1
An area of 10* km? of high seismicity is affected by an earthquake of magnitude
M = 5.5 Richter every 80 years.

For this area the max acceleration is given through the following relationship:
loga = 1.88 + 0.48M — 1.62log(4 + 15)
where a is expressed in cm/sec’ and A is the epicentral distance in km. Please:

1. Construct the probabilistic curve of exceeding (repeat period curve) in the
seismic area. Before you draw the curve, calculate the repeat periods T;, for
the values of a; = 50, 100, 150 and 200 cm/sec®. Where is the curve
converging, when T converges to infinite?

2. Calculate the design period T4 for a usual structure, when the probability of
exceeding is p(At) = 0.10 and the useful life, At = 50 years. Which is then the
corresponding peak ground acceleration?

3. Estimate the useful life that corresponds to the design — peak — ground —
acceleration for a probability of exceeding p(At) = 0.20 and structures
designed with an importance factor 1.30.

Solution

1. Probabilistic curve of exceeding

Taking into account the given data, for each acceleration value, we calculate
(through the given relation) the epicentral distance A and then the repeat period T.

1. oy =50 cm/sec’
log50 = 1.88 +0.48-5.5— 1.62log(4, + 15)
log(4, +15) = 1.7414 = A, +15=10"""" = A, = 4013 km
2. o, = 100 cm/sec?
log100 =1.88 + 0.48-55 — 1.62log(4, + 15)
log(4, +15) = 1.5556 = A4, + 15 =101°5°¢ = A, = 20.94 km
3. a3 =150 cm/sec’
log150 = 1.88 + 0.48-55 — 1.62log(4; + 15)
log(4; +15) = 14469 = A; +15=10"*%° = A, = 1298 km
4. a, =200 cm/sec?
log200 = 1.88 + 0.48-5.5 - 1.62log(4, + 15)
log(4,+15) = 13697 = A; +15=10"3%7 = A; =843 km



The relation that compares the repeat periods Tg and T; with the areas Ag and A;

for two different regions under the same seismic event is:

Ay T;
AT,
where: A, = tA;° , Ag = 10* km? and T, =80 years. Therefore
T, = Ag 7210
4,
For A, =40.13 km
10*- 80
T, = T a0132 = 158.14 years
For A, =20.94 km
10%-80
T, = — 209042 = 580.85 years
For A; =12.98 km
10*- 80
T; = 12982 = 1511.30 years
For A4 = 8.43 km
10*- 80
T, = 8432 = 3585.05 years

The above results are tabl

ed as follows:

Acceleration (cm/sec?) Epicentral distance (km) Repeat period (years)
50 40.13 158.14
100 20.94 580.85
150 12.98 1511.30
200 8.43 3585.05

On the basis of these data the repeat-period-curve can be constructed. In fact,

through a brief EXCEL program developed for this purpose, many different values of

the above parameters can be provided showing thus the change between acceleration

and repeat period, of course through the epicentral distance which does not appear in

the graph. The program data along with the graph are depicted on the last page.

When T converges to infinite, obviously the acceleration converges to a

maximum value which corresponds to a zero epicentral distance.

This maximum value can be estimated from the initial formula, putting A = 0.

109 oy = 1.88 +0.48 - 55 — 1.6210g(0 + 15)

= 10gamg, = 26147 = Ay, = 411.84 cm/sec?

2. Design period




Given are: At =50 years and p(At) = 0.10. The design period is therefore:

;oo At _ =50
17 In1-p) In(1-0.1)

= 474.56 years

The peak ground acceleration can be approached by two ways:

i) Directly through the probabilistic curve of exceeding and
ii) Following the reverse procedure; i.e. from T4 (years), estimating the
epicentral distance A, which then yields a.
In our case, for T; =474.56 years, the previous relation,
_ AO : TO 104 * 80

T, = 47456 =
' 7'l.'Ai2 T[Al'z

yields A; = 23.16 km. Then from the initial formula we get:
loga =188+048-55—-1.6210g(23.16 + 15), or

loga = 1.9578 and a =90.74 cm/sec’.
3. Useful life

Given are: Importance factor =1.30 and p(At) = 0.20.

Once the importance factor affects the design peak ground acceleration ag, the
resulting new one is: a4 = 23-a = 1.30-90.74 = 117.96 cm/secz.

Then the equation

log117.96 =188+ 048 55— 1.62log(4 + 15)
will yield the value of the epicentral distance A =17.45 km.
The corresponding design period is therefore:

T _Ao'To_ 104'80
"W T A2 m-17.452

= 835.85 years

Finally, the life period is estimated from the formula:
T At 835.85 —dt
= 8=—_
17 In(1-p) In(1 —0.2)

= -At=835.85:In0.8 and At =189 years.
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Exercise 2

An earthquake of magnitude 6.0 on the Richter scale occurs every 90 years in a
region of 10" km?, where a structure is going to be constructed.

Following the directions provided in the Greek Seismic Code, for g=1 and soil class A,

1. Calculate the peak ground acceleration expected at the site of the structure
for the above earthquake.

2. Draw the probabilistic curve of exceeding for the peak ground acceleration at
the site of the structure.

3. Draw the elastic design acceleration spectrum
a) For 20% probability of exceeding in 50 years and
b) For 10% probability of exceeding in 80 years,

Recommendation: Use the Ambrasseys, Simpson & Bommer (1996) attenuation

relationship for rocks and 16% probability of exceeding.

Solution

The expected peak ground acceleration for an earthquake at the site of the structure
can be calculated through the attenuation relationship of Ambraseys, Simpson &
Bommer (1996) for A=0.

loga =-1.47 + 0.266M — 0.922:logR + 0.100S, + 0.094S< + 0.25P,
where M=6.0, R = VA2 +3.52 and A=0.

Sas are dummy variables for the site class. For rocks, their values are:
SA=0 and Sg=0.

It is also P=1 for 16% probability of exceeding. Therefore:
loga =-1.47 + 0.266x6.0 — 0.922log(3.5) + 0.25, or
loga =-0.1256 and finally a=0.749.

1. In order to draw the probabilistic curve of exceeding, which represents the
values of ground acceleration versus repeat period, we have to fill up the
following table:

ai(g) Ai(km) Ti(years)
0.05 65.81 66.15
0.10 30.88 300.48
0.20 14.23 1415.10
0.30 8.77 3728.09
0.40 5.96 8073.45




0.50 4.14 16685.90
0.70 1.39 148548.07
0.74 0.56 899710.03

Example of procedure:

For a; =0.10,

log0.10 = -1.47 + 0.266:6.0 — 0.922-log /Al? + 352+0.25, or
log /Af + 352=1.492, or A;=30.88km.

Then, taking into account that the seismic area A; (associated with the value a;)
is a circle with a radius A;, where the unknown repeat period T; corresponds, from
the data of the given area A, with its repeat period Ty, we can solve for T; the

equation
AT, = AT, where A =7z-A}
Therefore: T; = AgTo/TA.
If we put: Ag = 10* km, To =90 years and A; =30.88 km, then it yields
T, = 10°x90/m-30.88% = 300.48 years.
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2. The relation connecting the repeat period, Tg, of an earthquake along with a
structure’s useful period of life, At, and the probability p of exceeding the

earthquake’s magnitude, is
_ —At
£ In(1 - p)



a) If we put At =50 and p=0.20, it yields Tg = 224.07 years

Using the above graph, referring to the probabilistic curve of exceeding,
for Tg = 224.07 years, we end up with the corresponding peak ground
acceleration, which is a, = 0.07g.

b) Similarly, in the above equation, if we put At =80 and p =0.10, it yields
Te =759.3 years.

Again, making use of the above graph, for Tg = 759.3 years, we find the
corresponding acceleration a, = 0.15g.

For both cases, the elastic design acceleration spectrum will be created
according to the Greek seismic code, taking into account the restrictions of the
problem.

For soil class A, itisT; =0.1 and T, =0.4.

Also forg=1, itis:

®,(T) nbp, ®,(T) 1-1-25
= or = =25
Ay, q A1 1
Therefore: Dy4(T,)(g) =2.5-0.07=0.175 and
®q4(Tp)(g) = 2.5:0.15=0.375
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The spectrum starts from the peak ground acceleration and increases linearly
up to the point [0.1, ®4(T1)], because T, =0.1.

Then, keeping a constant value up to T, = 0.4, it follows the path shown by the
corresponding equation, in which equation the first term is the constant value
®4(T1) of the spectral acceleration, while the second term is the ratio T,/T,
raised to the power of 2/3.



Exercise 3
A research for determining the local seismic hazard where an important structure is
going to be constructed, gave the curve shown in Fig. 1. Calculate:

1. The peak ground acceleration, according to which common structures are
going to be constructed for a life duration and a probability of exceeding
proposed in EC8.

2. The life duration, corresponding to the peak ground acceleration, for a
structure of important factor 1.15 and a probability of exceeding 20%.

3. The max magnitude of an earthquake, assuming that its epicenter is located
at the site of the structure. Use Fig.1 and the following attenuation
relationship:

logA =1.86 + 0.49M — 1.65 log(A+15) (Ainkm, Ain cm/sec?, and g=10 m/secz)

An earthquake in the area of the structure resulted to the spectrum shown in Fig. 2.
Calculate the probability of occurrence for a life duration 50 years.
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Solution

According to EC8, the proposed life duration for common structures is At = 50 years,
while the probability of exceeding is p = 10%.

The repeat period is therefore:

_— -At =50
E7 Inl-p) n0.90

=475 years

Using the curve in Fig. 1 for the above repeat period, we find the corresponding peak
ground acceleration A = 0.24g.

1. The design acceleration, being dependant on the importance factor, is for the
new building, A =1.15-0.24g =0.276g.

Using the same curve for the new ground acceleration, we find T¢ = 800 years.
Therefore:

—At —At
Ty = m = 800 = 17090 = At = 84 years

2. Since the epicenter of the earthquake is on the site of the structure, it follows
that A=0.

The max acceleration, according to fig. 1, is: maxA = 0.5g = 500 cm/sec’.
Therefore, the attenuation relationship becomes
log500 = 1.86 + 0.49M — 1.65:log(0 + 15),
from which, the yielding max magnitude of the earthquake, is M =5.7

3. Using the spectrum of fig. 2, for T = 0, we obtain the peak ground
acceleration, A =0.25g.

From the curve of Fig. 1, for A=0.25g, we find Tg =500 years.

Therefore:

—At —80
Ty =——— = 500=———" = In(1-p)=-0.16
In(1 - p) In(1 —p)

Consequently

l1-p=e7" =082 = p=0.148 = 14.8%.



Exercise 4

Spectrum Acceleration (g)

A series of elastic acceleration spectra of Kalamata’s earthquake (1986) is
depicted in the figure below. Calculate:

1.
2.

3.

0.0

The max acceleration of the earthquake.

The spectral magnification factor, i.e. the ratio of max spectral acceleration to
the max ground acceleration, for dumping ratios (=2, 5 and 10 %.

The max displacement and the max seismic force of the following structures,
which present the following respective seismic characteristics:

a) Reinforced concrete (RC) building: T=0.12sec, m=1000t and {=5%
b) R.C. building: T=0.25sec, m=3000t and {=5%

¢) R.C.structure: T=0.32sec, m=3000t and {=5%

d) R.C. bridge: T=1.20sec, m=10000t and {=5%

e) Steel structure: T=0.60sec, m=500t and {=2% and

f) Timber building: T=0.20sec, m=200t and {=10 %.

Draw the relative displacement-spectrum for { =5 %. Calculate the values of
displacement by taking natural periods from 0 to 1.0, using a step of 0.10 sec.

Earthquake of Kalamata (1986) | |
Elastic Response Spectra for damping

¢=0, 2, 5, 10 and 20%

0.0 01 0.2 03 04 05 06 07 08 09 10 L1 12 13 14 15 16 17 1.8 19 20
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Solution

1. The max acceleration of the earthquake corresponds to T = 0, when the
structure obviously cannot undertake any relative displacement.

From the spectrum, for T=0 yields PSA =0.27g.

2. The maximum spectrum accelerations, corresponding to the three requested
damping ratios are:

For (=2% = PSA=1.82g
For (=5% = PSA=1.25g
For (=10% = PSA=0.80g

Consequently the spectral magnification factor is respectively:

For (=2% = B=-29=¢6.74
0.27'g
_ __ 1259 _
For (=5% = f = o279 4.63
For =10% = f=-29_-2 96
0.27-g

3. Maximum displacement and seismic force
a) R.C. building, T=0.12sec, m=1000t and {=5%

From spectrum, for T=0.12 = PSA=0.45g

The max seismic force is estimated through the equation P = PSA‘-m, where m s
the mass of the structure. Hence:

Pmax = 0.45-g-1000 t = 1000 Mgr-0.45-10 m/sec’ = 4500 kN.

From theory of single degree of freedom (SDOF) structures, it holds:

S m " 4m*m
= — =
"% T?

where k is the stiffness of the structure. If 6 is the displacement of the above mass,
then P =k-6. In this equation, if k is replaced by the value taken from the previous

equation, it yields

_4nm _ PSA-T?
P = T2 0=PSA-m = 5—T

The displacement, 6, of the structure is therefore:

0.45-10

m
5= c

socZ’ 0.12%sec?

e =0.0016 m




b) R.C. building: T=0.25sec, m=3000t and {=5%
Similarly, from spectrum, for T=0.25 = PSA =0.80 g. Therefore
Pmax = 3000-0.80-10 = 24000 kN and

5 PSA-T?_080:10:025

o o =0.013m

c) R.C.structure: T=0.32sec, m=3000t and {=5%
Similarly, from spectrum, for T=0.32 = PSA=1.25g. Therefore

Pmax = 3000-1.25-10 = 37500 kN and

PSA'T? _ 1.25-10-0.322
4772 4772

d) R.C. bridge: T=1.20sec, m=10000t and {=5%

6= =0.033 m.

Similarly, from spectrum, for T=1.20 = PSA=0.25g. Therefore
Pmax = 10000-0.25-10 = 25000 kN and

P T? 0.25-10-1.20°

= o =0.091m

e) Steel structure: T=0.60sec, m=500t and {=2%
Similarly, from spectrum, for T=0.60and {=2% = PSA =0.80 g. Therefore
Pmax = 500-0.80-10 = 4000 kN and

P T? 0.80-10-0.60°

= o =0.073m

f) Timber building: T=0.20sec, m=200t and {=10%
Similarly, from spectrum, for T=0.20 and {=10% = PSA =0.45 g. Therefore

Pmax = 200-0.45-10 = 900 kN and

5 PSA-T? 04510020’

=0.0045m
A2 A2
4. Displacement spectrum

The displacements SD will be calculated through the equation SD = PSA/w?, where:

_27‘[
©=7



For each value of period T, a value of acceleration is yielded through the spectrum,
along with a value of w. The following table summarizes the results.

T (sec) PSA (m/sec?) | w (1/sec) SD (m)
0.00 2.70 co 0.0000
0.10 4.00 62.83 0.0010
0.20 5.50 31.42 0.0056
0.30 11.20 20.94 0.0251
0.40 8.40 15.71 0.0340
0.50 7.70 12.57 0.0488
0.60 6.10 10.47 0.0556
0.70 5.70 8.98 0.0707
0.80 3.70 7.85 0.0600
0.90 2.90 6.98 0.0595
1.00 2.00 6.28 0.0507
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Exercise 5

Two similar water towers, illustrated on Fig. 1 of next page, are founded on different

grounds; one on the rock at point A, the other on a thick ground layer at point B.

During a seismic event, two accelerographs, that existed on places A and B, recorded

this vibration. The data analysis of records which followed, gave the elastic spectral

accelerations (damping ratios { = 5%), depicted on Figure 2.

Calculate:

1.
2.

3.

4.

5.

6.

Data -

The max acceleration developed on the base of each tower.

The max acceleration and the corresponding seismic force developed on the
center of gravity (CG) of each tower.

The shear force and bending moment developed on the base of each column,
provided the structure behaved elastically.

The max elongation of water pipe that connects the two towers between the
points A and B.

The max elongation of the same water pipe, if it connected the two towers
between the points A’ and B’.

Estimate the dumping ratio T of the thick ground layer, considering that it
behaves elastically.

Assumptions:

where

The water towers present a dumping ratio { = 5%, which is different from that
of the ground layer.

The towers rest on 4 similar columns, having a cross section 0.50 x 0.50 m
and a height h=6.0 m.

Total weight of each tower, included water, is W = 1000 kN.

Young modulus of elasticity for Reinforce Concrete, E = 21-10° MPa.

The ground layer behaves as SDOF with a self period, Tg = 0.5 sec.

The points A and B’ of the rock move together as a unit.

Before calculating the dumping ratio  of the ground layer, take into account
the modification factor n, given by the Greek Seismic Code (EAK 2000), where
it is stated that

PSA(7) = PSA((=5%)n,

(+2°



WT,;

A

WT,

Water pipe B’

Water pipe

B
Figure 1
0.5 0.5
AL L
{=5% / \ =5%
0.4 0.4
)i / \\r v \
= 0.3 II\,,/\\ @U} / \\
= A LA 3 y
- 0.2 N V v \ - 0.2 v\
™~ v
0.1 ~ 0
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0
T (sec) T (sec)
Point A Point B

Figure 2




Solution

Using the elastic acceleration spectra for points A and B for T = 0, we get directly the
max ground acceleration:

For point A: Sa (A) =0.15g
For point B:  Sa (B) =0.20g

1. Since the dumping ratios for both — the spectra and towers — are the same,
i.e. T = 5%, the max acceleration, developed on the center of gravity (CG) of each
water tower, is possible to be estimated through their self-period T, making use of
their elastic acceleration spectra. If T; is the self-period of the water tower, it is:

m
ktot

T, =2n

where m is the total tower mass which is:
m = W/g = 1000 kN/10 m/sec” = 100 kN-m™-sec?

and kit is the total tower stiffness, which is: kit = 4k.. A double fixed column,
obviously develops a stiffness, k., which is:

_12E]

Cc h3

where E is the Young modulus of elasticity, h the height of column and J the second
moment of area of its cross section, which is:

_bn_ 080T 005208 m*
“12 12 m
Therefore
12-21-10° %Y . 0.005208m*
ke = e = 6076 kN/m

which yields a kot = 4ke = 4:6076 = 24305 kN/m and finally a self-period of tower

100 kN-m~1-sec?
T =27 [————— =0.403 sec
24305 kN/m

For the water tower WT3, the spectrum at point A for a period T = 0.403 sec, gives
an acceleration of:

Sa (A) = 0.275g



Similarly, for the tower WT,, the spectrum at point B for the same period T =0.403
sec, gives an acceleration of:

Sa (B) = 0.45g.
Therefore the horizontal seismic forces developed at their center of gravity are:
F1 = m-Sa(A) = 100 kN-m™-sec? -0.275g = 275 kN and
F, = m-Sa(B) = 100 kN-m™-sec® -0.45g = 450 kN.

2. The maximum shear force developed at the base of each column, Q, is the
quarter of the corresponding force acted at the CG. Furthermore, for a double fixed
column, the bending moment at both, foot and head sections, is M = Q-h/2. Hence:

For water tower WT1: Q; = F1/4=275/4 =68.75 kN and

M; = Qy-h/2 =68.75-6/2 = 206.25 kNm, while
For water tower WT1: Q, = F,/4 =450/4 =112.5 kN and

M, =Q,-h/2 =112.5:6/2 =337.5 kNm.

3. The maximum elongation of the water pipe is obviously expressed by the
relevant displacement of the point A with respect to B.

Point A is on the rock while point B is on a ground layer founded on the rocky mass.
Besides given is that the rocky mass is moving as a solid body, i.e. points A and B”
move in the same way. Therefore the problem is to find out the relevant
displacement of point B” with respect to B.

It has been assumed that the ground layer behaves as SDOF oscillator founded on
the rock, with a self-period T; = 0.5 sec. For every SDOF oscillator is stated that:

Sd_Sa_ Sa
@y

where: Sd is the spectral relevant displacement of the oscillator
Sa is its absolute acceleration and
T, w are respectively its natural period and frequency.

In our case Sa is the absolute spectral ground-layer-mass acceleration (the mass is
considered to be concentrated in the point B), where it is Sa(B) = 0.20g. Therefore:

Sa(B) _ 0.20g

2
&) (i)

Sd(B) =

> =0012m



In other words, since point B (ground) has been moved with respect to point B”
(rock) 0.012 m, this distance obviously represents the max elongation of the water
pipe between the points A and B.

4. For two oscillators, presenting self-periods T4, T, and dumping ratios q, {,
their max distance is

Al = \Ju? +u3,

where uy, u; is the max displacement of each oscillator with respect to its base.

Regarding the case of relevant displacements, Sd(A’), Sd(B') of the water towers
with respect to their base, it holds that:

Sa(A") _ 0.275g
- =

(7)  (oaos)

Sa(B") _ 0.45¢g
- =

(7 (oaws)

The max elongation of the water pipe A'B’ is therefore

Sd(A") =

~=0011m

Sd(B") =

Al =4/0.0112 + 0.0182 = 0.021 m

5. The ground layer is simulated with a SDOF oscillator presenting a self-period
T = 0.5 sec, which, having fixed (founded) on point B"* of the rock, has a maximum
acceleration obtained from the spectrum, PSa(B) = 0.20g. Since the rocky mass is
moving as a solid body (points A and B’* present the same displacement), it yields
that

Spectrum of point B"* = Spectrum of point A

The dumping ratio C of the ground layer is unknown; however, if it was 5%, like
rock’s, then we could use for the ground the spectrum of point A.

Using the spectrum of point A, for T, = 0.5 sec, we find a max acceleration for an
imaginary point B in the case where all the ground was a rock, PSa(B)[5%] = 0.25g,
which is different from the real one, PSa(B)[{] = 0.20g. The difference of the two
acceleration values is due to the different dumping of the ground layer.

From the Greek Seismic Code, it holds:

PSa(B)[T] = PSa(B)[5%]-:n (1), where n = /5% (2).
From (1) = 0.20g=0.25g:n = n=0.8.

j— 7 -
From (2) = 0.8 = 7oz = (=28.94%.



Exercise 6

A) The single-storey R.C. structure illustrated below, was designed and
constructed following the terms of the Greek Seismic Code (EAK 2000).

For the following data: Seismic Risk Zone I, Soil class A, Importance Category S, =1,
Damping Ratio { = 5% and Foundation Factor 6 = 1.0, calculate:

1. The design base shear force along with the design shear force and bending
moment of column Kj.
2. The maximum expected displacement of the building.

B) After the construction, a recalculation of the seismic hazard showed that the
max expected ground acceleration is 0.36g. In the case of having an earthquake
event of this level, calculate:

1. The ductility developed by the structure.
2. The shear force and bending moment of column Kj.
3. The max displacement of structure during the earthquake.

Data

e The columns, of height h = 3.0 m, behave as double fixed elements.
e Young’s modulus of elasticity E = 30-10° kN/m?, g = 10 m/sec’.

e Direction of earthquake’s design: x-x.

e Ignore the rotation of structure.

e The structure exhibits 40% overstrength.

e For mass calculation take also into account 30% of the live load.

e Permanent and live load: 10 kN/m2 on the slab surface.

e Behavior factor (from EAK 2000) g = 3.5

Ay

6.0 m
o K,
? oKf wN L 80x30
JUX
N
4.0m
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Solution

A1) In general, the strategic procedure to be followed in cases of a seismic
design, is to calculate the main parameters useful for the critical design values.

In our case, the mass, stiffness and natural period of the structure are the
critical parameters before estimating the design base shear force.

Seismic Load Combination: Q = g + 0.3:q, where g the permanent given load
and g is the live load. If B is the weight of the structure’s slab, then

B = (6.0-4.0)m%(10 kN/m? + 0.3-10 kN/m?) = 312 kN. The mass of structure is

_B_ 312N _ t
m_g_lom/secz_ < Mgror t.

Since the seismic direction is x-x the stiffness parameters will be considered
with respect to the y-y axis.

Second moments of inertia — Stiffness. It is:

bh® 1.0-0.33 s
Jiy =45 = =225:107m
_12Ej,, 12-30-10° (%) 225-103m*
iy =5 = e = 30000 kN/m
Similarly
bh®  0.30-0.8 \
Joy =5 =15 — =00128m
12EJ,, 12-30-10°.0.0128
koy =5 = - = 170667 kN/m

Due to the point-symmetry of the structure’s plan, ki, = ks, and ky, = kay.
Therefore the total stiffness of structure is:

Kiot = 2(k1y + kay) =2(30000 + 170667) = 401334 kN/m.

The mass and stiffness parameters of a structure are enough to calculating its
natural period T. Therefore:

T=on | = on | SLZMIT g
T ke 401334 kNIm Y 56

Since 0 £ T < T; due to the soil class A of the structure,




the design acceleration parameter ®4(T)/Ay, is given by the equation:

@, (T T -0 -
Dy, T(@Oh )
Ay T, q

where q = 3.5 for inelastic behavior of the structure. Substituting

0.055 <1.o .10-25 1)] 020
0.10 35 - Y

The design base seismic horizontal force of the structure, is therefore

®,(T) = 024g 1.0 [1 +

Py =m-Oy(T) =31.2 Mgr-0.20g = 62.4 kN
The design shear force of column K is

k, __ 30000

=—p,= 2.4 =4.66 kN
keor & 201334 °

Vai
As a result, the design bending moment of the same column is obviously
h 3

A2) The displacement of the structure corresponding to the yield point is

s o Pa _ G24KN _ .,
Y T kror kN~ m
tot 401334~

Consequently the max displacement is:
8max = 9-6, =3.5:1.55-10" = 5.43-10" m
B1) The ductility developed by the structure can be defined by the equation

Pel

Preal

M:q:

where Pg is the elastic seismic horizontal force coming from the ideal elastic system,
i.e. the new earthquake, presenting a max ground acceleration A’ = 0.36g and a
behavior factor g’ = 1.0, while P is the real seismic horizontal force at first yield,
coming from the old one at first yield, P4, multiplied by the overstrength factor,
which is 1.4.

This factor (see p. 125 Penelis — Kappos) takes into account the variability of the
yield stress f, and the probability of strain-hardening effects in the reinforcement.

The earthquake acceleration of the new seismic event, derived for the same
local conditions, is



0.055 (1.0 +10-25

- 1)] = 06574
Pel = m'¢’d(T) =31.2:0.657g = 204.98 kN
Preat =1.4-P4=1.4-62.4 =87.36 kN

Therefore:

,_ P, _ 20498

b~ 8r3e 23

B2) The real shear force and bending moment of the column K; can be
similarly calculated

kq 30000
Vreal,l = Epreal = m8736 = 6.53 kN
0
h 3
Mreal,l = Vreal,l 5 = 6-535 = 9.8 kNm

B3) Applying, as before, a similar way of thinking, the max displacement of the
structure is

] .
9 max = K '6y,real

where &, real is the displacement of the structure corresponding to the first yield,
which is

5 _ Prear _ 8736
yreal =™ . 401334

=218-10"*m

Consequently the maximum displacement is

6'max = u"éy’rea| = 2.35'2.18'10_4 = 5-12'10-4 m.



Exercise 7

The R.C. bridge presented below, was designed according to Greek Seismic Code for zone |,
soil class B, Importance category 23, Behavior factor g = 3 and Foundation factor 6 = 1.0.
During the design procedure the rotation of bridge was ignored.

After the completion of the structure, an earthquake occurred in the area, the elastic
response spectrum of which, for the y-y direction, is depicted in Fig. 2.

Calculate the displacement ductility factor for pier M, during the y-y seismic direction,

taking also into account the rotation of the bridge.
Data and assumptions

e Uniformly distributed load on the bridge: 25 kN/m?
e Young’s modulus of elasticity: E = 3-10" kN/m?

e Qverstrength factor for piers: 1.2
Piers, presenting a circular cross section with diameter D = 1.7 m, behave as single

fixed members (cantilevers)
e |gnore K.
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Solution

Seismic characteristics of structure before earthquake

Stiffness of piers along the y-y direction:

L = 3EJ, 3:3-107-m-1.7*/64
Yo 7.03

=107 575.65 kN/m

_3EJ, 3:3-107-m-1.7*/64

ke = 25" = 307 = 16 794.92 kN/m

Therefore: ki = ky + k, =124 370.57 kN/m

Mass, period and seismic design acceleration of structure:

W 48-12-25
m=—=———""=1440 Mgr

g 10
T=2 \/m—z 1440 _ 676
~ %k " 12437057 ~ P see

For zone |, itis: A=0.16g. Also given are:

Important factor: 23 =1.15
Behavior factor: q=3
Soil classA > 6 =1.0 and n=1.0.
For soil class A, itis: T, =0.10sec, T, =0.60 sec.
Since T=0.676 > T,=0.60, we use equation 3 of the seismic code, i.e.

2
3
) =1.15-0.16g

n6p, (T,
Ryry = viA <_

10-10- 2.5( 0.60
T

2
3
3 0.676) = 01429

The horizontal seismic force on the y-y direction is therefore:
F=m-Ryr = 1440-0.142g = 2 044.8 kN

Consequently the design shear force developed at pier M,, is:

yM: = k2 _ 2044.8 16794.92 _ 276.13 kN
T keor 12437057 T

Calculation of shear force at pier M, after the seismic event

Our target is to find out the relevant displacement of pier M,, taking also into account the
rotation of the bridge. For this reason we need to locate both the centre of gravity (CG) and
the centre of elastic rotation (CER).



Initially we install a Cartesian coordinate system with its zero point on the bottom left of the

deck.

. 2 i 24m d 12 .
!f T ! '
) ||
roh
M, h=I13m
Section
Y
o A
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0 S, =
w'}
3241, 20.759 3 6
0 x
. ; ' v
2
12 24 Plan 12

Due to the symmetry of the structure’s plan, both of the above centres will be on the
horizontal axis of symmetry of the plan. Besides, the CG will be on the vertical axis of

symmetry, presenting thus coordinates (24, 6) m.

In order to calculate the abscissa (horizontal distance from vertical axis) of CER, along with

the components of the rotational stiffness, we fill up the following table:

. X; Di, xiDi, X =X— Xcgp x*Di,
| saym (kN) (m) (kNm)
M, 12.0 107 575.65 1290907.8 -3.241 1129983.3
M, 36.0 16 794.92 604 617.1 20.759 7 237 537

SUM 124 370.57 1895524.9 8367 520.3

Before filling up the X (and possibly ) field of the table we calculate the abscissa of CER,

which is:

% (xi-Di,) 18955249

= = = 15.241
XCER > D, 12437057 m

Then, the coordinates of the i column with respect to the CER system, are

Xi = Xi — XCcER

(and  ¥; =y; — ycer respectively if we have more columns vertically).



Therefore we can proceed to filling up the last (two) column(s) of the table.

Similarly, the rotational stiffness of the bridge will be calculated through the form
ko = % (Di, + 22Dy, + 77Dy).

However, since the first term will be omitted, while, due to the symmetry, y; =0, it yields
that

ko, = X (%2D;,) = 8367 520.3 kNm/rad.

Now the displacement of pier M, due to the y-y earthquake, taking also into account the
rotation of the structure, will be evaluated through the following formula, derived from page
52 of theory

Py =P Yec + By Xeg
UMZZé"' ad kw 24 Xg

The first term comes from the y-y shift of the bridge as a whole, while the second
expresses again the y-y movement of the Pier M, due to the bridge’s rotation. It has to be
noted that the second term is different from point to point, depending on the location of the
pier with respect to the CER.

Making use of the given spectrum, for T = 0.676 seg, it yields that PSA = 0.155g.
The seismic elastic force, P,, on the y-y direction is therefore:
P, =m-PSA =1440-0.155g = 2 232 kN
Besides, it is:
Xce = Xcg — Xcpr = 24.0—15.241 =8.759m,
Yee=0 while
Xs = Xy, = Xy, — Xcgr = 36.0 —15.241 = 20.759 m.
The displacement of pier M, is therefore:

B B 2232 22328759

= + 20.759 = 0.06645
k, 5 12437057 83675203 m

Consequently the relevant elastic shear force will be:
VM, = ky vy, =16794.92-0.06645 = 1116 kN

The displacement ductility factor of pier M, can finally be estimated as:

o Vw106
Bm, = 1'2'VdM2_ 12-27613 T




Exercise 8

The single storey framed structure illustrated in Fig. 1, was designed according to the
Greek seismic code for zone I, soil class A and importance category 2. During the
design procedure, the rotation of structure was ignored.

After the end of structure, an earthquake on the y-y direction occurred in the area,
the elastic response spectrum of which is illustrated in Fig. 2.

Calculate the displacement ductility factor, developed at column K,4, for the above
seismic direction y-y, taking also into account the rotation of the structure. The over-
strength of the column was evaluated to be 20%.

Data: Weight of building 1000 kN, additional load at point A, 200 kN, Young’s

Modulus of Elasticity for reinforced concrete, E = 30x10° kN/m?, g=10 m/sec’® and
height of storey h =3 m. The columns behave as double fixed elements.
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30x60 ¥4 30x30
- 4.0m
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Solution

A) Evaluation of the design shear force for column K4

Stiffness of columns:

_12EI _12-30-10°-03-0.63/12

y _
Y= T = 72000 kN/m

, _12E1 12-30-10°-03%/12 _

24~ 3 303 = 9000 kN/m
Total K = 2(K1,3,y + K2,4y) = 162000 kN/m
W = 1000 + 200 = 1200 kN
m =W/g=1200/10 = 120 Mgr

T, =2 120 =0171
y =% |162000 ' %¢C

For soil class A, itis T; =0.10 sec and T, =0.40 sec. Since T; < T, <T,,
It follows that Rg(ry) = v14 %, where:

Importance category, is 2, = vy, =1.0
Zonell = A=0.24g
SoilclassA = 6=1.0

g =3.5 (framed structure)
n=1.0 (reinforced concrete)

Therefore Rg(ry) =1.0-0.24- g L0192 = 0.1714g and
F = m-Rq(ry) = 120-0.1714g = 205.68 kN.
Consequently the design shear force for the column Ky is:

Ko, 9000
a = 20568 75500

B) Evaluation of V,** after the earthquake

|4 = 1143 kN.

y

For calculating the displacement ductility factor of column K4 we need to estimate

the relevant elastic shear force of the column, which will be derived from its total

displacement.
Using the elastic spectrum (Fig.2), for Ty =0.171 sec = PSA =0.30g.

Now we have to take into account the rotation of the structure. For this reason
we install a Cartesian system with its point of origin (0,0) at the bottom left end of

the column Ks.

Coordinates of the centre of gravity (centroid) K:

The structure presents symmetry of the columns’ loads F; with respect to

horizontal axis. Hence the coordinate of the centroid is:

Yk =2.0 m.



Now, if S, is the first moment of area (weights) of the structure with respect to
the y-axis, then the abscissa (horizontal distance from axis) of the centroid is:

Xk = Sy/2F; = £(F;-x;)/2F; = (1000-3.0 +200-5.0)/1200 = 3.33 m

Coordinates of the center of elastic rotation (CER), E:

The structure also presents a stiffness-symmetry of columns with respect to
horizontal axis.

Therefore the coordinate (vertical distance from horizontal axis) of its CER, is:

Ye=2.0m.

The following table comprises the procedure to be followed in order to calculate
the abscissa of CER and then the displacement of K,, where:
e X, yi are the coordinates of the i column’s cross sectional cendroid with
respect to the Cartesian system,

e Di,, Diy are the stiffnesses of the it

column with respect to the x and y
direction of the Cartesian system respectively,
e X,y are the coordinates of the columns cendroid with respect to the X and ¥

axes (that have as origin the CER) parallel to x and y.

il X Yi Di, Di, xiDi, X | ¥ | %Di, | y’Di,

(m) (m) | (kN/m) | (kN/m) (m) [ (m) | (kNm) | (kNm)
Ki| 0.15 | 3.70 | 18000 | 72000 | 10800 |-0.63| 1.70 | 28576.8 | 52020
K,| 5.85 | 3.85 | 9000 9000 | 52650 | 5.07 | 1.85 | 231344.1 | 30802.5
Ks| 0.15 | 0.30 | 18000 | 72000 | 10800 |-0.63|-1.70| 28576.8 | 52020
K4| 5.85 | 0.15 | 9000 9000 | 52650 | 5.07 |-1.85|231344.1 | 30802.5

SUM 54000 | 162000 | 126900 519841.8 | 165645

Before we fill up the x and y fields of the table, we calculate the abscissa of CER,

which is:

Xgp =

2(x;- D) 126900

2Dy,

~ 162000

=0.78m

Then, the coordinates of the i column with respect to the CER system, are

X; = Xi — Xg

and

y: = y; — Vg respectively.

Therefore we proceed to filling up the last two columns of the table.

If K, is the rotational stiffness of the structure, then:




K, = D; +x?D; + y?D; )=519841.8 + 165645 = 685486.8 kNm
w i y 2 x

(where the first term, being too small compared to the others, has been omitted).
The displacement of column K4 on the y-y direction, taking into account both the
shift (due to seismic force) and the rotation of the structure, is
P, P,
Ky _ 1y Yy - =
uy' =t Tk X,

y
K, w

The first term comes from the vertical movement of slab as a whole, while the
second expresses the vertical movement of the column K4 due to the slab’s rotation.
It has to be noted that the second term is different from point to point, depending
on the location of the column with respect to the CER.

The seismic elastic force along the y-y axis is:
Py = m-PSA = 120-0.30g = 360 kN.
Besides, K, = ZDi, and
Xg = xg — Xg =3.33-0.78 = 2.55 m. Therefore:

k, 360 N 360
Y 162000 685486.8

The relevant elastic shear force, P, for the column K, is therefore

u 255-507=0009m=09cm

P’ = D,-u, = 9000-0.009 = 81 kN.

el

Finally, the corresponding ductility factor for column Ky is

k. Py _ 8l

el

ay, — K 19, -
Loy 12-114

59.



Exercise 9

The frame illustrated below consists of weightless columns of a common square section. The
columns, single fixed at A and double fixed at D, support a stiff girder.

The system, being designed against earthquake, gave the following acceleration spectrum:

0.2+4T for 0<T<0.2sec
S./g = 1.0 for 0.2<T<0.60 sec
060/T for T >0.60 sec.

(a) Build up the corresponding Displacement design spectrum (in cm).

(b) Determine the minimum cross sectional side of columns so that the maximum
displacement, (Una), is not greater than 4 cm.

(c) Calculate the maximum bending moment developed to each column due to the seismic

excitation.
Data:

e E=10"kN/m?,
e g=10m/sec’.

11 kN/m

—— ——
33 m
55m
=
7
A
A
-
11 m 77,

——
——



Solution

The design acceleration spectrum,

0.2+4T for 0<T<0.2sec
S./g = 1.0 for 0.2<T<0.60 sec
0.60/T for T >0.60 sec,

after a data process through or without EXCEL, leads to the following graph:

1,2

0,8
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(a) Using the pseudo-spectral relation

and solving for Sy, yields the displacement relation

TZ

Sd: Sa'm

which provides the values of displacements from the corresponding values of natural
periods. Therefore the displacement spectrum takes the form

[ g(0.2+4T)T?

for 0<T<0.20sec
472

gT?
Se = X == for  0.20<T<0.60 sec
41T

| 0.60T-g/4m® for T20.60sec,



which, after a similar process through EXCEL, leads to the following graph:
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(b) The demand for a maximum displacement of 4 cm, corresponds, as yielded from the
above graph, obviously to the second branch of the spectrum, which starts from the value
Sd =1 cm and goes on upwards until 9 cm. The displacement limits of this branch can be
calculated by substituting the limit values of T on the corresponding equation.

Therefore, for the above limited value of 4 cm, it holds that:

g T?
0.04 =
A2
wherefrom it yields
- 4mw2-0.04 0.397
= 10 =0. sec,

a value, which is verified from the above displacement spectrum. Therefore:

21
= —— =15.83 rad/sec.

_ 21
©= T T 0397

The oscillating mass is:

= L—ll 11—121t
m—qg— 0= 121ltn



The total stiffness of columns, responding to the maximum displacement of 4 cm, is:

=

w= i - ky=m-w?=121-15832% = 3032.13 kN/m.
Obviously k, is the sum of stiffnesses that yield respectively from the single fixed column k;
and the double fixed k,, each one of which is:

ko= B8 10T oo r0a00. )
TR T 33 '
12E  12-107 -1
= = = 721262211

>~ h} 553
Therefore ke =kq, +k, =(834794.22 + 721 262.21):1 . >
3032.13 = 1556 056.43 - I > I =0.0019486 m”.

Due to the square cross section (a-a) of columns, the second moment of area with respect to
the cendroidal axis is

a4-

=5 — a= V12-0.0019486 = 0.391m.

I

(c) Having calculated the cross sectional side, the stiffness for each one of the columns is:
ky = 83479422 -1 = 834794.22-0.0019486 = 1626.68 kN/m
k, =721262.21-1 = 721262.21-0.0019486 = 1 405.45 kN/m.

Therefore the corresponding maximum shear forces and bending moments of the columns

are:
Single fixed:
Vi =k;-S4=1626.68-0.04 = 65.07 kN
M; =V;-h =65.07-3.3 =214.73 kNm
Double fixed:

V, =k;,-Sq =1405.45-0.04 =56.22 kN

M, =V;-h/2 =56.22-5.5/2 = 154.61 kNm



Exercise 10

The three-storey R.C. building of Fig.1 was designed according to the Greek Seismic Code, for
the following parameters:

e Seismic zone: I,

e Soil class: B,

e Importance factory, =1,

e Foundation factor: 8 =1 and

e Damping ratio: {=5%.
On the roof of the building a small R.C. floor is going to be constructed, the plan of which is
depicted in Fig. 2.

For a seismic direction y-y, calculate the bending moments for each column of the roof
structure. The spectrum shown in Fig. 3 is referred to the roof of the 3-storey building.

—— A Y
K3 K4 -
3.0 40/40 40/40
m3=200 Mg
——
3.5
3.0
K 02
m-=200 M 1 40/40 -
4 2=200 Mg 2 40/40 X
'y L
' 5.5m
3.0 Fig. 2 Plan of the roof structure
m1=220 Mg 1
- SA/Apase A
25
4.0
1.0
-- ; i »
e 0.15 0.60 T(sec)
Fig. 1 Vertical section of the building Fig. 3 Spectrum on the roof of the three-storey building

Data and assumptions

e The roof structure, behaving as SDOF system, does not affect the overal status of the
existing building.

Natural period of the three-storey building: T=0.26 sec.

Total uniform load on the slab of the roof structure: 11 kN/m?.

Columns behave as double fixed elements.

Young’s modulus of elasticity for R.C. E=27-10°kN/m?.

e g=10m/sec’.



Solution
A) Seismic characteristics of the existing building
Total mass: 2:200 + 1-:220 = 620 Mgr
Natural period: T, = 0.26 sec
Zone: Il > A=0.24g
Importance factor: y, =1.0
Behavior factor: q = 3.5 (frame structure) > {=5% > n=1.0
Foundation factor: 8 =1.0.
Soil class: B - T, =0.15sec, T, =0.60 sec. Since 0.15 < T, <0.60 we use eq. 2

The design acceleration is therefore:

n-6-p

o 10-10-25
Rary) =71+ A=——=10-024g——c—

=0171
35 g
Consequently the design base seismic horizontal force is:

F =m-Rgm) = 620-0.171g = 1060.2 kN = V.

The above shear base force, V,, is, according to the equivalent static method, distributed to
each floor through the formula

F = y,—1L %
S j=1my " 7

F, = 1060.2 2204 = 10002 0 — 21799 kN

e ©220-4+200-7+200-10 4280 oo
F, = 1060.2 2007 _ 10002, )00 = 346.79 kN

2= “220-4+200-7+200-10 4280 e

200 - 10 1060.2

F; = 1060.2 = 2000 = 495.42 kN

220-4+200-7+200-10 4280

Check: ZF; =1060.2 kN

The seismic force of the third floor, F3, develops obviously an acceleration, as, on this level,
which is:

F; _ 49542 kN

= ;T 200 Mgr

= 24772 = 0.2477
e sec2 g

B) Seismic characteristics of the roof structure

Stiffness: k=4k,, i.e.



<12 -27-10°-0.4%/12

30° ) =4-25600 = 102400 kN/m

Mass: m =5.5-3.5-11/10=21.175 Mgr

Period: T = Zn\/E= 21 21175 0.09 sec
k \l 102400

From the spectrum referred to the roof of the building, for T = 0.09 sec, through

interpolation, it yields
SA/Aue = 1.9. Consequently
SA=1.9-Apase =1.9:0.2477g = 0.47g.
Therefore the total seismic force, P, of the roof structure, is:

m-PSA _ 21.175Mgr - 0.47 - 10 m/sec?

p 35 = 28.44 kN

The value of q has been taken equal to 3.5 to comply with the rest of the structure.

This force develops a shear force to each column, which is:
1 1
V1’2]3]4_ = PZ = 28441 =711kN

Consequently, the corresponding bending moments developed to each column is:

h 3
M1,2,3'4 = V1'2]3]4§ = 7115 =10.67 kNm .



Exercise 11

The four-storey building illustrated below is a R.C. structure.

1. Calculate the total shear base force along with the total shear forces and
bending moments acting on each pair of columns, through the Equivalent
Static Method.

2. Construct the corresponding diagrams of shear forces and bending moments.

e Natural period T =0.65 sec,

e Seismic Zone |,

e Soil Class B,

e |mportance category S2,

e Damping Ratio {=5%,

e Foundation factor 6 =1.0 and
e g=10 m/sec’.

my = 800 Mgr

4 K =T] e

3.0

\ my = 1200 Mgr

X N 3.0

N\ m, = 1200 Mgr

" N\

N N\ 3.0

m; = 1200 Mgr .

N

N
4.50m

S — I —



Solution

Equivalent Static Method
Using the given data, we apply the following parameters:

e Seismic Risk Zone I: = Ground Seismic Acceleration: A=0.16g

e Soil Class B: = Characteristic Periods T, =0.15sec and T, =0.60 sec
e Importance Category S, = Importance Factory, =1.0

e Damping ratio: {=5% and

e Foundation Factor: 6=1.0

For natural period T = 0.65 sec > T,, the design spectrum acceleration parameter,
taken from equation (2.1.c) (EAK 2000), is:

2
n-0-PBo(T2\3
Da(m :VI'A—<

—) =1.0-0.16g

2
10-10-25 (O.60)§ —10 m
7 =

35 0.65 sec?
The total mass of the structure is: my = 1200-3 + 800 = 4400 Mgr.
Therefore the structure’s shear base seismic force is:

P = Mot Pg(ry = 1.08-4400 = 4752 kN

According to theory, due to the fact that T < 1 sec, the above shear base force is
distributed along the height of the structure according to the formula:
ml Zl

Z(ml z;)

where m; is the mass of the it storey and z; is its corresponding height from base of

F, =

the structure. Here it is:
Z(mi -z;) =1200-45+ 120075+ 1200 - 10.5 + 800 - 13.5 = 37800

The seismic horizontal force for each storey is therefore:

F= P 75120045 g g6 i
S(m; - 20) 37800
Fy= P2 2= 475220 1O _ 4431 43
CEED) 37800
poop B e,12000105 L
CRD) 37800
myz, ____800-135

F,=P=————<=4752—————=1357.71 kN
YT Nm - 7)) °2 37800
which, for checking, gives the sum of 4752 kN.

The corresponding allocation of bending moments for each storey comes as a
result of the above shear forces.



Since Moot = Mihead = Mi = Fis-hi/2, where Fi, is the sum of the jth plus all the

above it seismic horizontal forces, it is:

h 3
M, = F4?4 = 1357.715 = 203657 kNm

hs 3
My = (Fs + Fy) - = (1357.71 + 1584) 5 = 4412.56 kNm

h 3
M, = (F, + Fy + 1&*4)?2 = (113143 + 1357.71 + 1584) 5 = 6109.71 kNm

hy 45

Following are the corresponding shear force and bending moment diagrams.
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2941.71

4073.14

4752
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Exercise 12

The four-storey building illustrated below is a R.C. structure.

1. Examine if the dynamic (modal superposition) method is applicable, using

only the first two modal shapes and then calculate the total shear base force
along with the total shear forces and bending moments acting on each pair of

columns.
Construct the corresponding shear force and bending moment diagrams of
columns.
Compare your results with those of previous exercise and comment
accordingly.
Seismic Zone |, Soil Class B, Importance category S2, Damping Ratio { = 5%,
foundation factor8=1.0and g =10 m/sec’.
Natural periods of the first two modal shapes: T1 = 0.65 sec and T2 = 0.17 sec
respectively.
Eigenvalues of the first two modal shapes:
Va1 1.00 Qa2 1.00
P31 0.88 P32 0.32
bt = = b, = =
1 =10, 0.62 @2} =10, —0.42
P11 0.36 P12 —0.86
my = 800 Mgr
3.0
\\ my = 1200 Mgr
3 \\ - 1 AP v f rerdr) 2 3o .__..___
N
3.0
\ my = 1200 Mgr
3.0
m; = 1200 Mgr
\ 4.50 m




Solution
The total mass of the structure is: my: = 3-1200 + 800 = 4400 Mgr.

1. Design of seismic values

Generalized masses

For the two given modal shapes, each generalized mass M;, (i = 1, 2), playing the role
of a “mass” at the i*" natural oscillation of the system, is:

M; = mypi; + myp3y + mz3; +muei;
= 1200-0.362 + 1200 - 0.62% + 1200 - 0.882% + 800 - 1. 02
= 2346.08 Mgr

M, = my@3, + myps, + mz@3, + mues,
= 1200 - (—0.86)2 + 1200 - (—0.42)2 + 1200 - 0.32% + 800 - 1. 02
= 2022.08 Mgr

Excitation factors

These are intermediate modal magnitudes, helping to calculate the horizontal forces
for each level; their values are:

L = mu@q1 + M@z + M3@z + Myu@yy
= 1200-0.36 +1200-0.62 +1200-0.88 +800-1.0 = 3032

Ly, = my@qy + My@yy + M3@sp + Myu@y,
= —-1200-0.86—1200-0.42+1200-0.32+800-1.0=-352

Participation factors

The participation factors, v;, are largely decreased by an increase of the modular
number, i. In general, their valueis v; =L;/M;, i.e:

_ L3032

V1T M, T 234608
=l 72 a4

Y27 M, ~ 202208

Check: v +v; =1.112 =1.0

Active Modal masses

The active modal mass, My;, is, for each modal shape, a quantitative criterion of the
maximum energy of deformation and constitutes an index of its significance.

In practice it yields the number of significant modal shapes to be taken into account,
ignoring all the others. The sum of all the active modal masses has a constant value,



Ms, close to the sum of the real masses. In general, the value of the i modal mass,
Mai, is Mai = Viz'Mi = Liz/Mi, i.e:

M=o 3982 _agigsm
at =y, T 234608 oo MIT
12 (—352)?
M, =Lz ) = 61.28 Mgr

@27 M, 2022.08
Check: Ms = M,y + M,z = 3918.5 + 61.28 = 3979.78 = 4400 = Mo,

Itis: Mg + Mg = 3979.78 Mgr and

0.9-myet = 0.9-4400 = 3960 Mgr
Since: M1 < 0.9-Myet, but M1 + Mgz > 0.9 Mg,
it follows that the first modal shape is not enough, while the first two modal shapes
are adequate to calculating the seismic response, using the given data:
e Zonelfactor=0.16 = A =0.16g

e Soil class B = T, =0.15sec, T, =0.60 sec
e Importance Category S, = y,=1.0
e Frame structure = g =35

Solution for the 1% modal shape

The natural period for this mode is T; = 0.65 sec. Since T; > 0.60, it follows that
the maximum design acceleration for the first mode is:

2 2
Ryry =7, -4 2P0 (T2 _ 14 016 2'5O<0'60>§—0108
a(ry = Vi ;) — 0935 \0es) Y
Following the procedure presented on page 69 of handouts, the corresponding

seismic forces per floor due to the 1% mode are:

L
P =m,- <p1,1ﬁ15a1 =1200-0.36-1.292-0.108 - 10 = 602.8 kN
1

L
Po1 =My 9217051 = 1200-0.62 12920108 - 10 = 1038.15 kN
1
Ly
P3’1 = m3 * (p3'1 Vsal = 1200 * O 88 * 1292 - 0108 * 10 = 14735 kN
1
Ly

P4,’1 = m4 * (p4'1 Vsal = 800 * 1 0 * 1292 * 0108 - 10 = 111629 kN
1

The first modal shape contribution to the shear base seismic force is thus:

Vo, = Z F,, = 4230.74 kN



Solution for the 2™ modal shape

Similarly, the natural period for this mode is T, = 0.17 sec. Since 0.15 < T, < 0.60,
it follows:

n-6-p

o 10-1.0-25
Rary =1 A=——= 10016 ——=—

= 0114
35 0.1149

In the same way, following the procedure presented on page 69 (handouts), the
corresponding seismic forces per floor due to the 2" mode are:
L,
Pio,=my @, VSaz =1200-(—-0.86) - (—0.174)-0.114-10 = 204.71 kN

2

L
Py =m,- <p2,2ﬁ25a2 = 1200 (—0.42) - (—0.174) - 0.114 - 10 = 99.97 kN
2

L

2

L
Py, =m,- <p4,2ﬁ25a2 = 800-1.0-(—0.174) - 0.114 - 10 = —158.69 kN

2

The second modal shape contribution to the shear base seismic force is thus:
Vo, = Z F,, = 69.82 kN

Combining the results for the two modal shapes per each storey, we finally get:

F, = |F2 + F% =+/602.80% + 204.712 = 636.61 kN

F, = |FZ + F% =+/1038.15% + 99.972 = 1042.95 kN

F; = |F2 + F% =[147350% + 76.17% = 1475.47 kN

F, = |F% +F% =+/1116.29% + 158.692 = 1127.51 kN

which totally give a shear base seismic force of Vo = 4282.54 kN.

Following the previous procedure, we find the following shear forces for each
storey:

V4 =F,=1127.51 kN

V3=V, +F3=1127.51 +1475.47 = 2602.98 kN
V; =V3 +F,=2602.98 + 1042.95 = 3645.93 kN
Vi =V, +F;=3645.93 + 636.61 = 4282.54 kN



As a result the corresponding values for bending moments, are:
My =V,4-hy/2 =1127.51-3/2 = 1691.27 kNm,
M3 =V3-h3/2 = 2602.98:3/2 = 3904.47 kNm,
M; =V,-h,/2 =3645.93-3/2 = 5468.90 kNm,
M; =V;-h,/2 =4282.54-4.5/2 = 9635.92 kNm,

Following are the corresponding shear force and bending moment diagrams.

1127.51 ? 1691.27

[9] M]

2602.98 169127 [7 3904.47

3645.93 3004.47 / 5468.90

=L 4282.54 5468.90 9635.92

4282.54 9635.92

Comparing the results of two methods, especially the [Q] and [M] diagrames, it is
obvious that values coming from the modal superposition (dynamic) method are
from 10 to 20% smaller than those coming from the equivalent static method.

The dynamic method, although time consuming and sophisticated, seems to be
closer to reality and this may be an additional reason to be used by computers.

On the other hand, the simplified static method, presenting a simplicity,
provides results that are safer for the construction, although less economical.



Exercise 13

The design flexural capacities of beams for the frame structure depicted in Fig. 1 are given
next to the corresponding tension side of each joint (top or bottom). Calculate the minimum
design flexural capacity of the columns to fulfil the capacity design conditions.

Data and assumptions
e The seismic action controls the design of beams, i.e. Mgy = Mg,
e Columns have symmetric sections and reinforcement and yzq = 1.4,

e The greater axial load below the joint of a column, increases its flexural capacity by
15 % compared to that above.

For the same frame, if the columns’ flexural capacities are depicted in Fig. 2, indicate where
the plastic hinges will form, for a seismic action from right to left.

50 60(8)80 70
@ 70 80| 70 50 ®

Ln

@ 50 100 | 3

50 80| 70 80

Fig. 1
BEAMS flexural capacity

D)
80 90 60 50
@ 70 60| 70 80 @

7. 7 7,
—— Seismic action

® <8)10-‘3 70 @

60

@ 65 @ 100 75 @
70 125 & Fig. 2
COLUMNS flexural capacity

70 120 @ 85
@ 80 125 95 @

90 125 95

/4 77 7




Solution

For a column to fulfill the capacity design conditions, the minimum design flexural capacity,
Mcp,c must be:

Mecp,c = 0ep"Mec

where Mcpc is the flexural capacity of the column, M is the bending moment of column,
derived from seismic analysis and acp the joint capacity magnification factor, yielding from
the equation

_ X Mpq
Qcp = VYRD ZTEI;

where IMgq is the sum of the beams’ flexural capacities gathered on the joint as a result of
the column’s bending moment and ZMg, the corresponding sum of the beams’ seismic
moments, derived from the analysis, following always the same direction to generate Mgc.

In our case, itis: Mgq = Mg,.
Therefore acp = Ygp = 1.4 and Mcpc = 1.4:Myc.

Since the seismic action is from right to left, it follows that joints tend to turn leftwards; the
beams, thus, reacting to this rotation, tend to turn rightwards. The values of beams’ bending
moments, to be taken into account from both sides of the joint, are therefore the lower left
and the upper right (tensional sides).

The equilibrium of a typical joint, excluding those of the upper storey, gives:

f\ Mec

Seismic action

e
Mgd,r

MRgd,|

1.15 MEc\_/
Z Mgy + z Mgc =0

- MRd,l + MRd,T = MEC + 115MEC = 215MEC

Capacity design is not compulsory for the upper storey. The columns’ flexural capacities are
simply derived from the corresponding joint equilibrium, i.e.



Seismic action

The following table provides the minimum flexural capacities for all the columns, upon and
below of each joint.

NIJJ(:'ri\r:er MRd, | MRd,r MCD, o™ | MCD,C,oq™"
' 80 52.09 59.9
2 60 60 78.14 89.86
i 80 52.09 50.9
! 60 39.07 44.93
> 80 100 117.21 134,79
° 80 52.09 59.9
’ >0 50,0
° % 80 160,0
’ >0 50,0

The procedure followed for joint 5, for instance, is:
MRd,I =80 kNm, MRd,r =100 kNm

The required flexural capacities (bending moments) above and below the joint are
therefore:

M, req " = 1.4-(80+100)/2.15 = 117.21 kNm,

Mepcreq ™" = 1.15-Mep creqg ¢ = 134.79 kNm



For the beams’ flexural capacities shown in Fig. 1 and for the columns’ flexural capacities
displayed in Fig. 2, the plastic hinges to be formed are depicted in the following figure with a
circle.

For instance, the required columns’ flexural capacities above and below joint 5 are:
Mep,creq " = 117.21 kNM, Mepcreq ™" = 134.79 kNm,
while the corresponding actual capacities for the same joint are 100 and 125 kNm.

Since 100 < 117.21 and 125 < 134.79, it yields that columns are _not strong enough, and,
therefore, the plastic hinges, will be formed at the columns themselves.

@-o o—@

@ o T oA ®

@—C oG o—@

70 4 7,

Depiction of plastic hinges formed on the frame structure



Exercise 14
The water tower of Fig. 1, the elastic design spectrum of which is depicted in Fig. 2, has been
constructed according to the Greek Seismic Code EAK 2000 for a behavior factor q =3.3, a
seismic risk zone | (A = 0.16g), soil category B and Importance factor 22 (y = 1.0).
A) The water tower, presenting a total weight (self-weight and water) 1200 kN and a Natural
period T = 0.7 sec, rests on 4 similar columns. For g =10 m/sec’, calculate:

1. The design seismic force and the corresponding shear force and bending moment which

is developed at the base of each column.
2. The expected relative displacement of water tower in the case of an earthquake.

B) After the construction of tower an earthquake occurred, the elastic response spectrum of
which is illustrated in Fig. 3.
Considering that the real horizontal force P, for which yielding of columns is initiating
is 30% greater than the corresponding design force, calculate:

The ductility developed during the earthquake.

The maximum shear force at each column.

The maximum relative displacement of the tower during the earthquake.

The maximum acceleration recorded by an accelerograph, laid on the water tower.
Do you think the water tower had reached the risk of collapse during the earthquake?

vk wnN e
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EAK Spectrum for g =1
Fig. 2

PSA/A = 2.5(0.6/T)%/3

4

1.0
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0.2 04 0.6 0.8 1 1.2
Period T (sec)
Fig. 3



Solution

A) The elastic design seismic force demands the corresponding horizontal seismic force,
which will be derived through the design spectrum.
1) Since the natural period of the structure is 0.7 sec, we are obviously on the third branch of
the design spectrum; therefore
UL PYS (0'6)2/3 = 25 (0'6)2/3 = 2.256
A TO\T - N7/ T
or PSA = 2.256-A = 2.256:0.16g = 0.36g

Consequently the elastic design horizontal seismic force, Pg g, is

w 1200
Py g = E.PSA: T'O.36'10 =432 kN

For q = 3.3, the design seismic force, Py, is:

P 432
eld — 7% —130.9kN
q 3.3

Pd =
Therefore, for each column, are:
Design shear force: V4 =Py/4 =32.73 kN
Design bending moment: My =V4-h/2 =54-6/2 =98.17 kNm.
2) In the case of an earthquake, the relative displacement, SD, of the water tower can be
calculated through the relation

TZ
PSA= w?SD - SD = — PSA

412
For T=0.7 sec and PSA = 0.36g, it yields
SD = T PSA = 07" 0.36-10 = 0.045
~ 4n? 4?2 e m

B) Taking into account the overstrength, developed at columns during the earthquake after
the construction of tower, we proceed to the following steps:

1) The ductility demanded during the earthquake is

o= 6max — E
631 PJ/

where: 8., is the maximum displacement of the tower
6, is the displacement of the tower when first yield is initiating

P, is the elastic horizontal force during the new earthquake, calculated through the
response spectrum and

P, is the yield force, i.e. the force when first yield is initiating.

From the given response spectrum of Fig. 3, for T = 0.7 sec, it yields PSA = 0.35g.



The elastic horizontal force during the new earthquake is therefore
Pe = m-PSA =120-0.35-10 = 420 kN.

On the other hand, the force P, when first yield is initiating, is
P,=1.3-P4=1.3-130.9=170.17 kN

Consequently, the ductility developed during the earthquake is

P, 420

= =2.47
B, ~ 17017

2) The maximum shear force which will appear after the earthquake at each column is
obviously the corresponding to each column seismic force when first yield is initiating, i.e.

V= 1P = 170'17—42 54 kN
max —4 y = 2 = .

3) The maximum relative displacement of the water tower during the earthquake will be
calculated through a way similar to that used for the corresponding displacement at the
design stage. The difference here is that the relative acceleration, PSA, will be derived from
the corresponding response spectrum.

For T=0.7 sec, the response spectrum defines PSA = 0.35g. Therefore

SD T PSA 07° 0.35-10=10.043
= — = ——0. . =0. m
Ar? Ar2
4) The maximum possible acceleration, a,..,, which could be recorded by an accelerograph
laid on the water tower, will obviously correspond at the time when yield is initiating at the

columns, i.e. when the horizontal seismic force reaches the value of P,.

In this case, it will be

B, 17017
T fmexT 0T Ton

5) In order to examine the case if the water tower had reached the risk of collapse, we have

= 1.42 m/sec?

y — M Qmax

to calculate the behavior factor, q., developed during the earthquake and compare it with
the corresponding behavior factor, g, which has been taken into account during the design
phase. Then,

e If g. <q, the structure had not reached the risk of collapse. But
e If g. > q, the structure had already past the risk of collapse.

The behavior factor, q., developed during the earthquake, is
de = Wdo, Where

- W is the ductility factor and
- o is the ratio P,/Py, i.e. the overstrength factor.

In our case, itis u=2.47 and qg =1.30. Therefore
Je = Mo =2.47-1.30=3.21<3.3

Consequently the structure had not reached the risk of collapse during the earthquake.



Exercise 15

1. A structure, presenting a weight of 1500 kN, a natural period T = 0.8 sec and a
height of 9 m, has been designed against earthquake with a behavior factor q =
3.2. If the maximum horizontal force, carried by the structure, is P, = 450 kN,
calculate:

a. The corresponding maximum acceleration.

b. The available overstrength, if the structure has been built for a design
seismic force, P4 = 320 kN.

c. The maximum elastic displacement that the structure can sustain.
d. The maximum possible displacement, developed without a collapse risk, if
the structure is really under a collapse risk for a ductility factor p = 4.
2. Two structures A and B present the same mass, same height and have been
designed with the same behaviour factor, g, and the same design force, Py.

a. If the structure A presents triple the stiffness of B, how are the maximum
displacements related, according to the design procedure?

b. If the structures, instead of having the same mass, present the same natural
period, while the structure A is designed for 3/4 the ground acceleration than
that of structure B, repeat the question 2a.

3. Two structures A and B present the same natural period and have been designed
with the same behavior factor, g, and the same design acceleration Qq4(T). If
structure A presents double stiffness compared with structure B, how are the
maximum displacements related, according to the design procedure?

4. Two adjacent structures with same mass and same natural period have been
designed according to EAK.

e The first one, with g =1 and @4(T) = 0.748g, was designed on the limit
without overstrength.

e The second, with a q = 3.4, presented some overstrength.

During a seismic event, the first suffered a significant damage, while a max
acceleration 0.32g was recorded on the roof of the second.

What was the overstrength factor on the second structure?



Solution

1. a. For the maximum possible acceleration, a,q, 5, which will take place at the
start of yielding, we obviously take into account the maximum horizontal force
that the structure can sustain, Py, i.e.

P, 450

=" -02= 2:
Amax y ~ = 1500710 3 m/sec 0.3g

b. Since the structure has been built for a design seismic force, P4 = 320 kN, it
follows that its overstrength is

Py = Pq _ 450 —320

= = 0
5, 320 0.4063 = 40.63%

c. For calculating the max elastic displacement we will obviously use the
above maximum possible acceleration, i.e.

2

a T? 0.8
= T2 - ( ) -0.3g = 0.049m

‘smax_y - w2 - mamax_y = 6.28

d. Since the structure is really under a collapse risk for a ductility factor u =4,
having calculated the max elastic displacement, dmax y, at the start point of
yielding, the maximum possible displacement will be derived making use of
the ductility factor, i.e.

8
= T s S T Spaxy = 4°0.049=0.196m
max_y

2. a. Since the two structures present the same given design properties, the
following relations will hold:

51¢1ax = 53';1%]: 7

57)1%ax = 55'6[:—

Dividing by parts the above equations, it yields:

SA. kg 1 y 1
6711?1ax = E = § - 6max = §6gwx

b. In this case we have to correlate the maximum displacements with the
corresponding maximum accelerations where the frequencies are involved. It is:

TA=TB 9 Wp =Wg

57‘1%ax = 531;1'(1: —q

51)?1ax = 63113"1: —4q



In the same way, dividing the previous equations by parts, it yields:

A A
5max a_y — § - 6A — _63
53 C(B 4 max 4 max
max y

3. Similarly the two structures have been designed with members presenting the
same properties, but ka = 2ks. Making use of the previous equations and
taking also into account that the design acceleration, ®4(T), can replace the
maximum acceleration divided by q, i.e. amax = Dg4(T)-q, it holds:

TA:TB 9 Wa =Wsg

6‘4 — ¢d (T)
max 2

57)1%ax = 2
and obviously &84, = 88,,, i.e.independent of stiffness.

4. The structure A has been designed elastically (q = 1) for a limit design
acceleration @4(T) = 0.748g, without overstrength.

During the earthquake, it suffered significant damage. Therefore it had already past
the point of elastic yielding under the acceleration of 0.748g.

If structure B had also been designed elastically, it would have reached the start
point of yielding under the same acceleration, i.e. 0.748g.

However, due to the applied behavior factor q = 3.4, the yield point, according to
design, has already been realized for a

®y(T) =0.748g/3.4 = 0.22g.

Consequently, since on the structure B, an acceleration of 0.32g has been recorded,
it follows that we are already in the yielding stage and hence, the overstrength
factor is:

p, m-a, 0329

= =1.45
P; m-a; 022g




