
PLANE TRUSSES 
Definitions 
A truss is one of the major types of engineering structures which provides a 

practical and economical solution for many engineering constructions, especially in 
the design of bridges and buildings that demand large spans. 

They consist of straight members i.e. bars, connected at their extremities through 
joints. Therefore no member is continuous through a joint. 

All the members lie on a plane, while the loads carried by the truss, are only 
concentrated forces that act on the joints and lie on the same plane. 

When a concentrated load is to be applied between two joints, or a distributed load 
is to be supported by the truss – as in the case of a bridge truss – a floor system must 
be provided, in order to transmit the load to the joints. 

Although the members are actually joined together by means of bolted or welded 
connections, it is assumed that they are pinned together. So the forces acting at each 
end of a member are only axial, without the existence of bending moments or shear 
forces. 

Each member can be treated as a two-force member, in which the two forces are 
applied at the ends of it. These forces are necessarily equal, opposite and collinear for 
equilibrium.  

The entire truss can therefore be considered as a group of pins and two-force 
members, which obviously are either in tension or in compression. 

The basic element of a plane truss is the triangle. Three bars jointed by pins at 
their ends constitute a rigid frame. The structure may be extended by adding each 
time two additional bars through a joint to form a rigid, i.e. noncollapsible structure. 

  

Structures that are built from a basic triangle in this manner are known as simple 
trusses. 

Trusses that are geometrically similar and have the same loads at corresponding 
joints, will present equal forces to the respective members. This means that the force 
of a member is not dependant on the size of the truss itself but on the magnitude of the 
external loads and the geometry of the truss.  

When more members are present than those needed to prevent collapse, the truss 
is statically indeterminate. On the other hand, when fewer members are present, the 
truss is not rigid, forming a mechanism. 

A truss is said to be rigid and statically determinate, when the number of 
members, m, along with the number of joints, j, satisfy the equation 

m = 2j – 3 . 

The concept of rigid expresses the stability of the truss, without being a 
mechanism, while the term statically determinate defines the possibility for the truss 
to be analyzed and solved through one of the three methods that will be presented 
hereafter. 

The term analysis and solution of a truss, denotes the necessary procedure, to find 
for all or some of the members: 



• The magnitude of the axial force and 
• The situation of act for each member, i.e. if it is under tension or compression. 
The three methods to solve a truss are: 
1. The analytical method of joints 
2. The graphical method of Cremona’s diagram and 
3. The method of sections 

The method of joints 
This method demands satisfaction of the conditions of equilibrium for the forces 

acting on the connected pin of each joint. The method therefore deals with the 
equilibrium of concurrent forces acted on the joint, where only two independent 
equations are involved: 

0=∑
+
→x         and         0=∑ +↑y

The equation ( ) 0=+↵∑M  cannot be used, once the forces are concurrent. 
We start the analysis with any joint, where at least one known load exists and not 

more than two unknown forces are present. 
The external reactions are usually determined by applying the three equilibrium 

equations to the truss as a whole, before the force analysis of the truss is begun. 
During the equilibrium analysis of a joint, when we introduce the unknown force 

of a member, the arrow which expresses the sense of its vector is arbitrary. In this 
way, if the sense of the arrow is away from the pin, this means that the member pulls 
the joint, i.e. the bar is under tension; otherwise it pushes the joint, i.e. it is under 
compression. 

The positive or negative sign that yields from the equation of equilibrium, denotes 
respectively the correct or wrong sense of our arbitrary choice. 

If three forces act on a joint, and the two of them are on the same line, while the 
third one is vertical or forms any angle with that line, then the third force is always 
zero, while the other two are equal and opposite. 

The procedure of the method is presented in the example that follows. 

Example 
Compute the force in each of the nine members of the following truss by the 

method of joints. 

 

Solution 
Reactions 

( ) 03140 =⋅−⋅−⋅⇒=+↵∑ aBaaM A  ⇒ B  =  1 kΝ
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0140 =+−⇒=∑ +↑
yAy  ⇒ Αy  =  3 kΝ

010 =+−⇒=∑
+
→

xAx   ⇒ Αx  =  1 kΝ . 
Having calculated the reactions, we draw the free body diagram of the truss and 

start analyzing the joint equilibrium, where, concurrent are only two unknown forces. 

 
 
Equilibrium of joint B 
We design the joint B as the zero point of a virtual Cartesian coordination system, 

by drawing all the forces that act on it (here, completely known is the reaction B = 1 
kN, while the other two are known in direction only), introducing, for instance, S1 in 
tension and S2 in compression. 

 

Starting from equation Σy↑+ = 0, (in order to avoid S2), we get: 

045sin10 1 =⋅−⇒=∑ +↑ οSy    or  
707.0
1

1 =S   =  + 1.41 kN , 

045cos41.10 2 =⋅−⇒=∑
+
→ οSx   or  707.041.12 ⋅=S   =  + 1 kN . 

The fact that the sign yielded for the forces S1 and S2 is positive, means that the 
senses we selected for these forces are correct. 

These correct senses are now transferred on the corresponding members of the 
free body diagram, beside the joint, whose equilibrium has already been analyzed. 

According to the principle of action – reaction (Newton’s third law), we then draw 
at the other ends of the same members (1 and 2) the opposite senses, which are the 
real actions on the adjacent joints. 

Now we notice that member 1 pulls joint B. Therefore it is under tension of 1.41 
kN and also pulls the adjacent joint Δ, by the same force. 

At this time, on the table that follows at the end of this solution, we record the 
result for member 1 as +1.41 kN. 

 Member 2 on the contrary pushes joint B. Therefore it is under compression of 1 
kN and also pushes the adjacent joint Z, by the same force. 
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This new result is recorded on the table as –1 kN. 
Since on the joint Z concurrent are three unknown forces, we have to move to the 

joint Δ, following the same procedure. 
Equilibrium of joint Δ
Here, introducing both the unknown forces as tensile, we get: 

0145cos41.10 6 =+⋅+−⇒=∑
+
→ οSx   ⇒   S6  =  + 2 kN ,

045sin41.10 3 =⋅+⇒=∑ +↑ οSy      ⇒   S3  =  –  1 kN . 

 

While the positive sign of S6 means the correct sense of its vector, the negative 
sign of S3 means that the correct sense of this vector is the opposite from what has 
been selected, in other words the member is under compression. 

Transferring the correct senses on the corresponding members of the free body 
diagram beside the joint Δ and following the same procedure as before, we record on 
the table the results for members 6 and 3 as  + 2 and  – 1 respectively. 

Note: From the above sequence it is clear that if we initially introduce an 
unknown force as tensional, then the sign that yields from the equilibrium equation 
directly expresses the real situation of the corresponding member. The opposite 
occurs if we introduce the force as compressional. 

Equilibrium of joint Z
Similarly, from the following figure, we get: 

 

045sin10 5 =⋅−⇒=∑ +↑ οSy      ⇒   S5  =  + 1.41 kN , 

045cos41.10 4 =⋅−−⇒=∑
+
→ οSx   ⇒   S4  =  – 2 kN . 

Equilibrium of joint E
Similarly, from the following figure, we get: 

 

020 8 =−−⇒=∑
+
→ Sx     ⇒   S8 =  - 2 kN

040 7 =−−⇒=∑ +↑ Sy    ⇒   S7  =  - 4 kN 
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Equilibrium of joint Γ
Since we have here only one unknown force, the other equation will be used for 

checking. 

  

0245sin41.145sin0 9 =+⋅+⋅−⇒=∑
+
→ οοSx   

          ⇒   S9  =  (1 + 2)/0.707   =   + 4.24 kN
Checking:  ∑  !014345cos41.1445cos24.4 =+−=⋅+−⋅=+↑ οοy

Equilibrium of joint A (Checking) 

 

!0231245sin24.41 =−+−=−⋅+−=∑
+
→ οx   

!03345cos24.43 =−=⋅−=∑ +↑ οy  

Table denoting the force of each member 

Member 1 2 3 4 5 6 7 8 9 

Force (kN) +1.41 – 1 – 1 – 2 +1.41 + 2 – 4 – 2 +4.24
 
Having located the correct senses for all forces on the free body diagram, we note 

that for each member, the real axial force is the opposite from what the member 
initially tends to show. For example, member 2, while tends to show that it is under 
tension, in reality it is under compression, because it pushes both joints at its ends. 

The checking, that is realized at the end of the procedure, is not necessarily a part 
of the solution of the truss. However, when the check is done and holds, it shows that 
both the reactions and the member forces have been correctly calculated. 

The designer obtains therefore the necessary confidence to follow the next stage 
of construction design, which is the calculation of the necessary cross section for each 
member, taking into account its material properties etc. 

The equations that have been used for checking, are substantially redundant and 
come as a result from the fact that we have already used the equations of equilibrium 
for the truss as a whole to calculate the reactions. 

Indeed, in a truss with j joints, and m = 2j – 3 member forces to be calculated, if 
we add the 3 unknown reactions that appear to a statically determinate girder, we 
totally obtain 2j – 3 + 3 = 2j unknown forces, that can normally be calculated through 
the 2j equations, yielding from the equilibrium of each joint. 

The reason that we first calculate the reactions, is mainly to start the procedure of 
joint equilibrium from one of the reaction joints, where, there are usually only 2 
unknown member-forces exerted. 
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The Cremona’s graphical method 
This method deals mainly with the graphical representation of equilibrium for 

each joint. The basic advantage that makes the method attractive, is its ability to unify 
all the force polygons, resulting from graphical equilibrium of each joint, into one 
only force polygon, known as Cremona’s diagram. 

Although graphical, this method leads to a quick determination of the member 
forces and is useful specifically in the cases where the external loads and/or the truss 
members form random angles. 

Consider the case of graphical analyzing the equilibrium of a point, acted upon 3 
forces, one of which is completely known while the other 2 are known in direction 
only (for example, a lamp hanged by two wires).  

All we have to do is: 
a) Draw the vector of the completely known force, in the proper direction, scale, 

magnitude and sense. 
b) From one end of the vector, draw a line parallel to the direction of one of the 2 

forces, while from the other end draw a second line parallel to the other direction. 
The vector and the point of section of the two lines define a triangle. 

c) Now, following the path of the vector by laying out the 2 unknown forces tip to 
tail, thus closing the force triangle, we find both the magnitudes and the senses of the 
other 2 forces. 

Of course the completely known force can be considered as the resultant of other 
known forces, through a force polygon. 

From this procedure we realize that the basic characteristic which appears to be 
common in the method of joints and Cremona’s diagram lies in the main strategic. For 
analyzing the equilibrium of a joint, in the first method available were 2 equations 
only, whereas in the second, the two ends of the known-force-vector only.  

Keeping in mind this similarity for the new method, we can also start and continue 
with the equilibrium of a joint, where at least one known load exists, while not more 
than two unknown forces are present. 

Compared to the analytical method of joints, the graphical method of Cremona’s 
diagram is less precise. However, the ‘loss of precision’ is unimportant and 
theoretical. Nevertheless, the speed and the elegance of the method are the main 
characteristics that make it popular and attractive by many designers. 

In organizing the method, specifically in naming the vectors of the diagram that 
express the member forces, significant was the contribution of Bow. This is the reason 
that the whole procedure is also known as method of Bow – Cremona. 

In the example that follows, the different stages of the method give the impression 
of a sophisticated work. However, having obtained some experience, these stages are 
followed mechanically and the graphical solution is realized quickly and safely. 

Example 
Determine graphically the force in each of the nine members of the following 

truss (next page) by the method of Cremona’s diagram. Check the results. 
 
 Solution 
Reactions 

( ) 0362350 =⋅−⋅+⋅⇒=ΣΜ +↵ BA  ⇒ B  =  9 kΝ ,

029550 =−+−−⇒=∑ +↑ Ay  ⇒ Α  =  3 kΝ .
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Having calculated the reactions, we draw the free body diagram (figure α) and 
follow the next steps: 

 
a) We define a clockwise sequence of forces around a joint. This means that if we 

start  drawing the force triangle for equilibrium of joint Δ, from, say, the known force 
of 2 kN, the next force considered will be that of member 1 and not of 2. 

b) Covering the whole area of the free body diagram, we name, say with Greek 
letters α, β, γ… both the triangles formed by the members and by the external loads, 
so that each member or load separates two areas. 

c) Then we start the equilibrium of a joint, say Δ, where only two unknown forces 
are concurrent, while the rest are known. 

d) Keeping the clockwise sequence, we always consider first the known loads to 
end up with the two unknown forces. 
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Joint Δ 

Defining the scale, we draw the known force of 2 kN by the named vector , 
because, rotating clockwise with respect to joint Δ, before crossing the load of 2 kN, 
we first step on the area β and then on the area γ. 

→
βγ

Going on clockwise, we meet the member 1. The force that this member exerts to 
the joint Δ is γι, due to the areas γ and i that it separates (clockwise with respect to Δ).  

From point γ on the Cremona’s diagram we draw a parallel to member 1. On this 
parallel we expect the point i. 

Continuing clockwise, we meet the member 2, which similarly exerts to the joint 
Δ the force ιβ. 

Since the point i is not yet known, if from point β we draw the parallel of member 
2, it crosses the previous parallel to member 1 at the point i. 

Having defined this point of section, the equilibrium of joint Δ is now expressed 
through the force triangle βγiβ. To close the polygon we follow the path yielding from 
the area letters γiβ that correspond to a clockwise rotation above the last two 
unknown forces, putting the arrow of sense at the end of each vector. 

These arrows express the correct senses of the unknown forces. Next we transfer 
the correct arrows to the corresponding members 1 and 2 on the free body diagram 
(figure α), beside the joint Δ, whose equilibrium has been considered. 

On the same members, we put next the opposite arrows at the other ends, i.e. 
close to the joints Γ and E. 

Now we notice that member 1, for instance, pushes joint Δ, with a force which is 
defined from Cremona’s diagram, if we measure – according to the scale – the length 
γi (or iγ). 

We find therefore γi = 6 units, and, on the table that follows, we denote the force 
of member 1 by the number –6. 

Table denoting the force of each member 

Member 1 2 3 4 5 6 7 8 9 

Force (kN) – 6 + 5.1 – 3.1 – 5.4 – 2 + 2 – 2.8 0 – 3 
 

Similarly we find that member 2 pulls the joint Δ by a force iβ = 5.1 kN. We 
record the force as + 5.1 and move on to the next joint Γ, once on the joint E there are 
3 unknown forces. 

Joint Γ

In order to end up with the two unknown forces of members 3 and 4 (figure α), we 
start our path from the known force of member 1, which is now iγ. 

We put therefore (figure β), the arrow of sense on the empty final part of length iγ 
(1st check), which arrow is the same with that placed before on figure α, as opposite at 
the other end of member 1. 

Going on clockwise we meet member 4, which exerts force γθ to joint Γ. From γ 
we draw a parallel to member 4, where we expect the point θ. 

We next meet member 3 (exerting to the joint the force θi). From i we draw a 
parallel to 3, thus defining the point θ. 

On the force triangle iγθi, which now expresses the equilibrium of joint Γ, we 
follow the path over the two unknown forces, i.e. γθi, putting at the end of the vectors 
the arrows of sense to this path. 
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These arrows are then transferred to the corresponding members (figure α), after 
which we put the opposite arrows at the other ends. 

We find out that members 4 and 3 are under compression. Measuring the lengths 
γθ and θi, we record on the table the forces –5.4 and –3.1 respectively. 

Joint E 

We start the force diagram from the known load  = 5 kN, so that the two 
unknown forces 5 and 6 are the last ones. From the point β we already have, we can 
easily define point α, by taking vertically upwards the length βα = 5 units. 

→
βa

Going on clockwise, we meet the already known force βi of member 2. Then, 
moving to Cremona’s diagram we find at the end of length βi the empty space to put 
the arrow of sense, which is checked with the one that we put before in figure (α). 

In the same way we check the sense of the known force iθ of member 3. 
According to what presented before, from point θ (figure β), we draw the parallel 

to member 5, which crosses the parallel to 6 from α, at point η. 
On the Cremona’s diagram, we cover the path θηα, laying the arrows at the end of 

each direction, which in turn are transferred to the corresponding members close to 
the joint, after which we put the opposite arrows to the other ends. 

On figure β, measuring the new lengths θη  and  ηα, and checking the push or pull 
of members 5 and 6 we record them on the table as –2 and +2 respectively. 

Joint Z 

In a similar way we draw on figure (β) the force  = 5 kN defining the point ε, 
and check the force αη of member 6. 

→
aε

From η we draw a parallel to 7, crossing the parallel to 9 from ε at the point ζ. 
The length ηζ defines the force –2.8 kN of member 7, while the length ζε, which is 

double (drawn here with a double line), defines the force –3 kN of member 9. 

Joint A

Having moved on the joint A we expect to find a zero-force for the member 8, 
according to the last paragraph of the method of joints. 

Indeed, having put on the Cremona’s diagram the known reaction Α =  = 3 kN, 
we define the point δ, belonging to the downwards vertical line from ε at a distance of 
3 units. However, since the force of member 9 has already been determined to 3 kN, it 
follows that δ coincides with ζ. The force therefore for member 8 (expressed by the 
length ζδ) is zero.  

→
εδ

Joint B 

The procedure of graphical equilibriums will be completed at the joint B, by 
checking the already known reaction B, i.e. its magnitude, direction and sense. 

Indeed, starting from the zero force of member 8 and checking the forces for 

members 7, 5 and 4 respectively with the vectors ,  and , we find out that 
the magnitude γδ of reaction Β is in fact 9 kN (= 9 units) with a vertical direction and 
an upwards sense. 

→
ηζ

→
θη

→
γθ

Note:  The calculation of reactions, especially for this truss could be avoided, 
once, for the start of graphical equilibrium, there is a joint (Δ), where there is a known 
load and only two unknown forces. In such cases the reactions yield from the 
equilibrium conditions at the support joints, and normally are used for checking.  
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The method of sections 
A truss is possible to be rigid and statically determinate, i.e. the equation 

m = 2j – 3 

may be satisfied. However, the truss itself might present problems in finding the 
forces of its members. In some cases these problems may be overcome after some 
effort, but in some other cases not. In particular: 

a) It is possible the force only of one member (or more) of the truss to be 
demanded, and this member(s) might be far from the joint, where we can start the 
conditions of equilibrium. 

b) The start of applying the equilibrium conditions may be impossible for any 
joint once there are at least 3 unknown concurrent forces to the joints.  

c) We start normally the application of equilibrium conditions, but progressively, 
we reach a point, where the continuation of the procedure is impossible because 3 
unknown forces are concurrent on any joint. 

In all the above cases, and not only, the solution is given by the analytical method 
of sections, or the Ritter’s method. 

The steps we usually follow to proceed on the determination of one or more 
member-force(s) of the truss are: 

1. Having calculated the reactions of the truss, pass a section through three 
members of the truss, one of which is the demanded for calculation. In this way we 
obtain two separate portions of the truss. 

2. Put tensile forces at all intersected members, so that the sign which yields after 
the calculation expresses the real axial force of the member.  

3. Of the two portions, select the one having the smaller number of external loads 
and draw the free body diagram. 

4. In general, write three equilibrium equations, which can be solved for the forces 
of the three intersected members. It should be noted here that we prefer to use the 
equation ,  with respect to the point of section i, between any two of 
the three intersected members, to find the force at the third one. A minor difficulty 
might appear here, to calculate the moment arm of the third member. 

( ) 0=+↵∑ iM

Before we pass the section, we make sure that: 
1. We do not separate a joint, but a portion of the truss, not less than a triangle. 
2. The number of intersected members should not be more than 3, if we want to 

avoid complicated calculations. However, since the minimum number of members to 
secure rigidity between two portions is 3, we prefer this number to be 3.  

In the examples that follow, the procedure of the method is presented, to face only 
the described problem. A further solution of the truss, if demanded, can be normally 
realized through one of the two preceding methods. 

Examples 

Compute the force in each of the three members 12, 13 and 14 of the 
following truss (next page) by the method of sections.  1 

Solution 

After the calculation of reactions, which here, due to symmetry, are A = B = 7 kN, we 
pass a section through members 12, 13 and 14, thus separating the truss into two 
portions. 
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Drawing the free body diagram for the left portion, we notice that, before section, 
the portion AΓΔ of the truss was in equilibrium under the action of the known 
reaction A = 7 kN, the three vertical forces of 2 kN each, and, of course, those 
corresponding to the intersected members 12, 13 and 14. 

The equilibrium of the above portion will continue to exist only if at the place of 
intersected members we put the real but still unknown (internal for the truss) forces, 
i.e. S12, S13 and S14 respectively, which we introduce tensile. If the yielding sign for a 
force is negative, this will mean that the real force is opposite, i.e. compressive. 

If  h  is the distance from Δ (cross point of members 12 and 13) to the member 14, 
r  the distance from E (cross point of members 13 and 14) to the member 12 and  ξ  
the distance from A (cross point of members 12 and 14) to the member 13, since the 
portion AΓΔ is in equilibrium, the three equilibrium equations will hold, i.e. 

  , ,  and 0=∑
+
→x 0=∑ +↑y ( ) 0=+↵∑ iM . 

We prefer instead to use three times the last equation with respect to the points Δ, 
Ε and Α, since the moment arms h, r and ξ of the respective unknown forces S12, S13 
and S14 can easily be calculated trigonometrically. Hence: 

a
h

32
1tan ==ϕ  ⇒ and  h = 1,5 a

φ = 26,57°    ⇒   sin φ = 0,447,  cos φ = 0,894    
    and   r = 4α⋅sinφ = 1,79 α

5,15,1tan ==
α
αω  ⇒   ω = 56,31°,    sinω = 0,832,   cosω = 0,555 

    and  ξ = 4α⋅sinω = 3,33α
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We can therefore write the three equations of equilibrium 
( ) 05,1222370 14 =⋅−⋅−⋅−⋅⇒=+↵

Δ∑ aSM ααα  

kNS 10
5,1

2421
14 =

−−
=  

( ) 079,122232470 12 =⋅+⋅−⋅−⋅−⋅⇒=+↵
Ε∑ aSM αααα  

kNS 94,8
79,1

24628
12 −=

−−−
−=  

( ) 033,3322220 13 =⋅+⋅+⋅+⋅⇒=+↵∑ aSaM A αα  

kNS 6,3
33,3

642
13 −=

++
−=  

Now we can simply check the equations  

0=∑
+
→x    and   ,  0=∑ +↑y

which of course we could use before to determine the forces S12 and S13. 

!08210cos94,8cos6,310 =−−=⋅−⋅−=∑
+
→ ϕωx  

!099,299,31sin6,3sin94,82227 =+−=⋅+⋅−−−−=∑ +↑ ωϕy  
 

Face a graphical or analytical solution of the truss presented in the 
following figure. 2 
 

 
Solution 
The truss consists of two rigid triangles, ΓΔΖ and ΑΒΕ, connected through three 

members, 4, 7 and 2, which are not concurrent. 
Obviously it is statically determinate and rigid, once the relation 

  m = 2j – 3 or 9 = 2·6 – 3   
holds. The reactions can easily be calculated through the equilibrium equations: 

kNBaBaM A 2033310)( =⇒=⋅−⋅+⋅⇒=Σ +↵ α  
kNAAy yy 10230 =⇒=+−⇒=∑ +↑  

kNAAx xx 1010 =⇒=+−⇒=∑
+
→

 
However, since on all joints concurrent are 3 unknown forces, it is not possible to 

apply neither the analytical method of joints nor the Cremona’s graphical method.  
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Passing the section ττ, (figure β of the next page) we separate the upper portion, 
which is in equilibrium under the act of the forces 1 kN, S2, S4 and S7.  

Introducing all the unknown forces as tensile and writing the moment equation of 
equilibrium with respect to the point Θ  it yields: 

kNSaSM 5.0035.110)( 22 −=⇒=⋅+⋅⇒=Σ +↵
Θ α  

Now writing the equations for vertical and horizontal equilibrium, we solve for 
the rest of the three unknown forces. 

 

kNSSy 5.005.0 44 =⇒=+−=∑ +↑  

kNSSx 1010 77 =⇒=−⇒=∑
+
→ . 

After calculation of forces S2, S4 and S7, (or only one of them) we can obviously 
continue with one of the preceding methods. 

Note: The calculation of reactions here was not necessary. It was done either to 
use them for the lower portion, or to show the impossible of applying one of the 
conventional methods. 

 
Face again a graphical or analytical solution of the truss presented in the 
following figure. 3 
 

 
 

Solution 
The truss is rigid once it consists of the rigid parts ΑΡΚΕΤΑ and ΒΡΩΜΟΒ which 

are connected through the joint Ρ and the member ΕΜ. Besides the relation 
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m = 2j – 3 or 15 = 2·9 – 3   

holds. As before, the reactions can easily be calculated through the equilibrium 
equations: 

kNBaBaM A 40434220)( =⇒=⋅−⋅+⋅⇒=Σ +↵ α  
kNAAy yy 404 =⇒=+−=∑ +↑  

  . kNAAx xx 60420 =⇒=++−⇒=∑
+
→

Nevertheless, neither the method of joints nor the Cremona’s diagram can be used 
to determine any member of the truss. 

 

Passing the section ττ, which intersects members 1, 2 and 3, we separate the right 
portion ΒΩΜΟΒ (figure β), which is under the act of the reaction Β = 4 kN and the 
forces S1, S2 and S3. Introducing all the unknown forces as tensile and writing the 
moment equation of equilibrium with respect to the point P, it yields: 

kNSaSM P 80240)( 11 −=⇒=⋅−⋅−⇒=Σ +↵ α  
Now writing the equations for vertical and horizontal equilibrium, we solve for 

the rest of the three unknown forces. 

kNSSy 657.5
707.0
4045cos4 33 −=−=⇒=+=∑ +↑ o  

  . kNSSx 1248045cos657.580 22 =+=⇒=⋅+−⇒=∑
+
→ o

Having determined S3 or S1, the calculation of the forces for the remaining 
members of the truss is possible if we start, by either method, from joint B or M 
respectively. 
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